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Abstract

Langley Stability and Transition Analysis Code (LASTRAC) is a general-purposed, physics-based transition
prediction code released by NASA for Laminar Flow Control studies and transition research. While signif-
icant progress has been made in the past decades concerning instability wave evolution and transition flow
physics both computationally and experimentally, transition prediction remains a nontrivial task for engi-
neers due to the lack of a widely available, robust, and efficient prediction tool. The design and development
of the LASTRAC code is aimed at providing one such engineering tool that is easy to use and yet capable
of dealing with a broad range of transition related issues. LASTRAC was written from scratch based on the
state-of-the-art numerical methods for stability analysis and modern software technologies. At low fidelity,
it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of
flow regimes and configurations by using either the linear stability theory or linear parabolized stability
equations method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until
the skin friction rise. Coupled with the built-in receptivity model that is currently under development, the
nonlinear PSE method offers a synergistic approach to predict transition onset for a given disturbance en-
vironment based on first principles. This document describes the governing equations, numerical methods,
code development, detailed description of input/output parameters, and case studies for the current release
of LASTRAC. Concrete examples that guide users from instability wave parameter exploration to N-factor
or amplitude-based transition prediction through a series of calculations are given in this manual.
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Chapter 1

Introduction

In the late 1980s and early 1990s, laminar-turbulent transition research was one of the outstanding issues
for the National Aerospace Plane (NASP), High Speed Research (HSR), and Advanced Subsonic Technol-
ogy (AST) programs. The recent DARPA Quiet Supersonic Platform (QSP) project (ref. [1]), aimed at
devising a low-boom laminar flow supersonic aircraft, rekindles interests in supersonic laminar flow con-
trol. The ongoing NASA Langley Supersonic Vehicle Technology (SVT) project also focuses on developing
technologies required for designing such supersonic vehicles. Computational tool development as well as a
series of wind-tunnel and flight experiments are planned.

Laminar flow control has been investigated extensively over the past decades. Experimental, theoretical,
and computational efforts on various issues such as receptivity, linear stability, and nonlinear evolution of
finite-amplitude waves significantly broaden our knowledge base of this intricate flow phenomenon. For
low-speed flows, various stages of the transition process are now fairly well understood. Theory and numer-
ical simulations using either parabolized stability equations (PSE) or direct numerical simulations (DNS)
accurately describe disturbance generation and evolution until the transitional stage. Secondary instability
in two-dimensional and swept-wing boundary layers observed in low-speed experiments may also be cal-
culated accurately via the nonlinear PSE and a 2-D eigenvalue approach (refs. [2, 3]). Saric, Carrillo, and
Reibert (ref. [4]) discovered that transition onset due to stationary crossflow instability can be controlled
by introducing spanwise periodic roughness elements (SPRE) near the leading edge to alter the mean state
and subsequently suppress or delay the growth of the most unstable disturbances. This control phenomenon
may be simulated and parametrically studied by nonlinear PSE (refs. [3, 5]).

For supersonic to hypersonic boundary layers, the breakdown mechanism is not fully understood, largely
due to the lack of experimental measurements. For 2-D boundary layers, computational results have indi-
cated that the secondary instability mechanism observed in low-speed cases may still be present (ref. [2]).
However, other mechanisms such as the oblique-mode breakdown (ref. [6]), are also possible and even more
relevant because of the large linear growth of the oblique disturbances in low supersonic boundary layers.
At hypersonic speed, large amplitude second-mode disturbances have been observed experimentally (refs.
[7, 8]) but the breakdown mechanism is unclear, mainly because the wave orientation in the experiments
is largely unknown. The recent experiment by Horvath et al. (ref. [9]) on a flared cone in a conventional
Mach 6 tunnel indicated that transition may or may not be caused by second-mode disturbances because of
a small N-factor at the transition onset. We need more detailed experimental measurements to clarify this
issue. Federov and Tumin (ref. [10]) and Zhong and Ma (ref. [11]) studied the receptivity of hypersonic

8



CHAPTER 1. INTRODUCTION 9

boundary layers to acoustic disturbance. Fedorov and Tumin (ref. [12]) investigated, both theoretically
and numerically, the role of the entropy layer on hypersonic boundary layers. Saric and Reed (ref. [13])
extended the SPRE control technique for supersonic swept-wing boundary layers.

Despite the advances in transition research, the traditional way of transition correlation and prediction using
the ��� method remains one of the mainstream tools used in the design phase due to its simplicity and avail-
ability. The N-factor method provides a simple way to correlate transition locations and predict transition
onset by using a prescribed N-value. For a higher fidelity transition prediction based on first principles, one
can start from the receptivity model and compute the disturbance initial amplitudes according to the given
disturbance environment, such as a roughness or free-stream disturbance distribution. Receptivity calcu-
lations may be based on a simple linear theory (e.g., the finite Reynolds number approach by Choudhari
and Streett, ref. [14], or Crouch, ref. [15]) or a more advanced linear Navier-Stokes (LNS) method (refs.
[16, 17]). The evolution of the internalized disturbances with known amplitudes can then be calculated by
using nonlinear PSE until the skin friction rise. Alternatively, a secondary instability calculation may be
performed for a steady, highly nonlinear boundary layer with the presence of stationary crossflow vortices
(ref. [3]). To further refine the transition region or to carry the perturbed field into a fully turbulent stage,
DNS or large eddy simulation (LES) may be used.

The integrated transition prediction approach described previously encompasses several mature computa-
tional means to form a package of tools for high-fidelity predictions beyond the conventional � � method.
Our current research effort is geared toward this integrated approach. To this end, the disturbance envi-
ronment must be modeled correctly, which remains a difficult task except in a forced transition situation
where manually excited roughness or free-stream waves dominate the disturbance environment. In a nat-
ural environment, statistical means must be introduced to account for the randomness of the disturbances.
Some efforts have been made in this direction (ref. [18]). A case study for supersonic swept wing using the
integrated approach is also available (ref. [19]).

One of the main goals of the ongoing NASA Langley projects for transition flow physics and prediction is
to devise a set of tools to enable traditional and integrated transition prediction. The Langley Stability and
Transition Analysis Code (LASTRAC) was developed to meet two main objectives: to provide an easy-to-
use engineering tool for routine use and to incorporate state-of-the-art computational and theoretical findings
for integrated transition predictions. For the former objective, LASTRAC can perform linear calculations
and transition correlation by using the N-factor method based on either LST or a more advanced linear PSE
method. The user interface of LASTRAC code was designed to allow users to identify unstable parameter
space in terms of disturbance frequency and wave numbers with minimum effort. Transition prediction or
correlation thus can be made with the identified parameter space. In addition to the traditional LST-based N-
factor calculations, LASTRAC allows users to perform linear PSE N-factor calculations, which sometimes
give a more compact N-factor range and better correlation.

To achieve the second objective, LASTRAC provides transition simulation capability based on an abso-
lute amplitude. The receptivity module computes the initial amplitudes near the neutral stability location.
Nonlinear PSE then simulates disturbance evolution until skin friction rise. For further refinement near the
transition region, a subgrid scale model based on nonlinear PSE, or an LES and DNS may be used. These
modules are all currently under development. We will only discuss the nonlinear PSE method in this paper.

In the current LASTRAC release, LST and linear and nonlinear PSE options are implemented for 2-D,
axisymmetric, and infinite swept wing boundary layers. In addition, 2-D mixing layer, axisymmetric jet, and
vortex flows are also handled by the current release. Extension to general three-dimensional (3-D) boundary
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layers is underway. This manual documents governing equations, numerical solutions, code development,
and case studies for LASTRAC Release 1.2.



Chapter 2

Governing Equations and Numerical
Formulation

2.1. Governing Equations

Figure 1: Coordinate system for 2-D or axisymmetric boundary layers.

The problem of interest is a compressible flow over a 2-D or axisymmetric body with a coordinate system
depicted in figure 1 where � is the streamwise, � is the wall-normal, and � is the spanwise direction (or
the azimuthal direction for axisymmetric cases). For the case of infinite swept wing boundary layers, the
coordinate system used is shown in figure 2 where � is the normal-chord (perpendicular to the leading edge)
direction and � is parallel to the leading edge. A nonorthogonal coordinate system can also be used for
infinite swept wing boundary layers and will be adopted for future LASTRAC releases. We use a body-
fitted coordinate to resolve the region adjacent to the wall. For 2-D or axisymmetric configurations, both
streamwise curvature along � and transverse curvature along � may be included in the computation; only
streamwise curvature is allowed for an infinite swept wing configuration. In the orthogonal body-fitted
coordinate system, elements of length are ������� , ��� , and �	�
��� , in the � -, � -, and � -direction, respectively.

11



CHAPTER 2. GOVERNING EQUATIONS AND NUMERICAL FORMULATION 12

Figure 2: Coordinate system for infinite swept wing boundary layer.

The element length can be written as

��� ��� 
 � � ��� ����� � � ��� 
 �	� � � ���
The metric � � is associated with the streamwise curvature � and is defined as

� � � �	� � �
The metric �	� is unity for nonaxisymmetric bodies; for axisymmetric configurations, it is defined as

� � ��

��� � ����� 
�� �
where


��
is the local radius and � is local half-angle along the axisymmetric surface.

The evolution of disturbances is governed by the compressible Navier-Stokes equations

���
��� ����� 
 ��� � � �

�"! �#� ��� � � �
� � � %$ � � ��&'� �
% 
 � ! � 
 �(� � � $ ����� ! ) 
 � � ��� � +* � $ �

(1)

�-,/.�! ��0��� � 
 � ��� � 0 $ � � � 
21 � 0 ���
� &
��� � 
 � ��� �3&'�54

%
where

� 
is the velocity vector,

�
the density,

&
the pressure,

0
the temperature,

, .
the specific heat, 1

the thermal conductivity, % the Reynolds number (to be defined later), and
)

and � the first and second
coefficient of viscosity, respectively. The viscous dissipation function is defined as
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4 � � 
 ��� � � � � )
� ! � � ��� � +* $ �

(2)

The second coefficient of viscosity is related to the first one by the Stokes parameter � , defined as

� �
�
� 
2� � �
� ) (3)

The perfect gas relation,

& � ��� 0
(4)

is used as the equation of state.

Equation (1) is in a nondimensional form, i.e., all lengths are scaled by a reference length scale � , velocity
by ��� , density by

� � , pressure by
� ��� �� , temperature by

0 � , viscosity by
) � , and time by ��"	�
� . For stability

calculations, these normalization quantities are taken to be the boundary layer edge values. The length scale
� is the similarity boundary-layer length scale defined by

� � � � � � "	� � (5)

where
� � is the dynamic viscosity. The corresponding Reynolds number is defined by

% � ���
� " � � (6)

The solution to the Navier-Stokes equations consists of two parts, the mean laminar flow solution and the
disturbance fluctuation, i.e.,

� ���� � ��� �
� ����+��� � �
���������� �& ���&'� & � � � ���� � � � � 0 � �0 � 0 � (7)) ���) � ) � � � � � � � � � 1 � �1 � 1 �
Substituting equation (7) into equation (1) and subtracting the governing equations for the steady-state basic
flow, we obtain the governing equations for the disturbances as

� ������ ���
� �

�
�
� �

��� �
��
�

� ,
�	�

�
�
�
�
� � � � �

%"! 

 $#%#
�
�
�

� � �
� � �

�  &#%'
� �

� � �
� � � �

�  '(' � � ��
� �

�  # �
�	�

� � �
� � � �

�  ' �
� �

� � �
�
�
�
�
�  � �

�
�
�

� � �
�
�
� � (8)

where
�

is the disturbance vector defined as

� � 
 & � � � � �
� � �
� � � 0 � � * (9)
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The coefficient matrices,
�

, � ,
�

,
,

,
�

,
 #%#

,
 #%'

, etc. are the Jacobians of the flux vectors, and % ! �
� � � ! " � � is the Reynolds number used to normalize the equations. The reference length scale � ! depends on
the flow configuration. For a boundary layer flow, the boundary layer length scale (defined in equation (5))
computed at the initial location of the stability calculations is used. For a jet or shear layer, the jet diameter
or shear layer thickness may be used.

The Jacobian matrices can be further decomposed into two parts. The first part contains only mean quantities
and the second part contains perturbation quantities. For example,

� � � � � � �
where � � � � � 
 �& � �� �	�� � �� � �0 � � � � � and � � � � � 
 �& � �� � � � � & � � � � � � � � � .
For a 2-D or infinite swept boundary layer, we assume the disturbance field is periodic in both temporal and
spanwise directions. The disturbance vector

�
can then be expressed as the following discrete Fourier series:

� 
 � � � � � � � � �
��

��� � �
��

��� � �
	
��� 
 � � � � �
��� ��� � � �������

(10)

where � and � are the fundamental temporal and spanwise wave numbers of interest, respectively. � and�
are the number of Fourier modes included in the calculation in time and space. The wave number � is

related to the physical frequency
�

by

� �
��� �
���
�

(11)

Another nondimensional frequency often used in stability calculations is defined by

� � ��� � �
� ��

�
(12)

The spanwise wave number is defined by
� ����� "&� � (13)

where � � is the spanwise wavelength normalized by the length scale � ! . The fundamental mode 
�� � � �
determines the size of the computational domain (

� " � in time and � � in the spanwise direction) and �
and

�
represent the numerical resolution (

� � ���
and

� � ���
discretized points in time and the spanwise

direction) in the simulation. The mode shape of a mode 
�� � � � is represented by the complex vector 	
��� .

Equation (8) is the governing equation for the disturbance evolution. Direct solution of equation (8) is
referred to as the direct numerical simulation (DNS) method. DNS requires a significant amount of compu-
tational time even for a simple linear case. Hence, a more efficient approximate solution to equation (8) is
desirable. When the disturbance amplitude is very small relative to the mean quantities, each Fourier mode
evolves independently. Nonlinear interaction among disturbance modes is negligible. The linearized version
of equation (8) can be written as

� � �
���� � �
�

� �

�
�
� �

��� � ����
�

� , �
� �

���
�
�
��� � � � �

%"! 

 �#%#
�
�
�

� � �
� � �

�  �#%'
� �

� � �
� � � �

�  �' ' � � ��
�
�

�  �# �
� �

� � �
� � � �

�  �' �
� �

� � �
�
�
�
�
�  �� �

�
�
�

� � �
�
�
� � (14)
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For a single disturbance mode 
�� � � � , � can be expressed as
� �

	 
 �
� � � � ��� � � � � ��� (15)

Substituting equation (15) into equation (14), we obtain


 �
�

� �
� � �  �# �

� � %"!
� � 	� �

� 
 � � � � �  �' �
�	� % !

� � 	� �
� 
 � � � � � � � � � � , �

� �
� � �  ����

�
�
� %"!

�
	
�

�
%"! 


 �#%#
�
�
�

� �
	� � �
�  �#%'

� �

� �
	� � � �
�  �'(' � � 	�

�
� � (16)

Equation (16) is the linearized Navier-Stokes (LNS) equation, which is a set of constant coefficient PDEs.
To solve equation (16) numerically, we discretize it in both � - and � -directions; the equation then reduces to

� � ��� � � ��� ��� � ��� (17)

where
� � ��� is the solution vector for all discretized points in the field,

� � ��� is the forcing vector associated
with the boundary conditions or external disturbance forcing such as wall blowing/suction or free-stream
disturbances associated with acoustic waves or vorticity. The matrix � � ��� is a banded or full block matrix
depending on the discretization scheme used. If a fourth-order central difference scheme is used in � , � � ��� is
a block pentadiagonal matrix with the block size determined by the discretization scheme in the � -direction.

By using a disk-based caching technique, Streett (ref. [16]) and Guo, Malik, and Chang (ref. [17]) were able
to achieve reasonable turn-around time for a moderate number of grid points in � and � . To enable routine
engineering calculations, further approximations must be made for equation (16). We discuss several such
approximate solutions in the following sections.

2.2. Quasi-Parallel Linear Stability Theory

In the linear stability theory, we assume that the mean flow evolves much more slowly in the streamwise
direction than in the wall-normal direction. As a result, in the vicinity of a given location, the mean flow is
quasi-parallel, i.e. the mean flow variation in � is negligible. The disturbance mode shape thus is assumed
to have the following wave form:

	 
 �
� � � ��� 
 � � � ���

#
(18)

The disturbance vector can be expressed as
� 
 � � � � � � � � ��� 
 � � � ���	�

#�
 � � � �����
(19)

where � is the local streamwise wave number at the given streamwise location. Substituting equation (19)
into equation (16) and neglecting the mean wall-normal velocity component (following the quasi-parallel
assumption) and all viscous terms that are of order

� " % �! or lower, we obtain


 � � � � �  �' �
�	� % !

� �
�
 �#%'

� ��%"!
� � �
� �

� 
 � � � � � � � � �
� � �
� �

� �
�  �#%#
�
�
� %"!

� � �  �# �
�	� %"!

� � � , �
� �

� � �  ����
�
�
� %"!

�
� �  �' '
% !

�
� �
��� � (20)
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The viscous term in the wall-normal direction is retained in the above equation to handle viscous instability
such as the Tollmien-Schlichting wave. Equation (20) is a set of ordinary differential equations (ODE). In
conjunction with a set of homogeneous boundary conditions to be described later, it constitutes an eigenvalue
problem with the following dispersion relation,

�
�

� 
�� � � � (21)

Stability calculations in LASTRAC are formulated as a spatial stability problem, i.e., for a given disturbance
frequency � and spanwise wave number � , the complex eigenvalue �

�
��� � �

� � is solved numerically. If
� � � � , the eigenmode is unstable. The corresponding solution of

�
is the eigenfunction of the mode under

consideration.

2.3. Linear Parabolized Stability Equations

In the quasi-parallel linear stability theory, the nonparallel effect due to boundary layer growth is neglected.
To account for this boundary layer growth, Herbert (ref. [20]) suggested decomposing the mode shape

	 
 �
� � � into two parts; the wave part described by a complex wave number � , and the shape-function part

�

to track additional nonparallel effects, i.e.,

	 
 �
� � � � � 
 � � � � � �������� � �
	 ��� 	 (22)

where
� � 
�
& � 
� � 
� � 
��� 
0 � is the shape-function vector. Here, �

�
� 
 � � varies along the streamwise

direction and its history effect is preserved in the integral. We assume that � does not vary along the wall-
normal direction to simplify the decomposition, and the shape-function variation in � is captured in

� 
 � � � � .
In contrast to the linear stability theory, the shape-function

�
also depends on � . This shape-function

dependency in � allows additional shape variation in � on top of the contribution from the wave number � .
Hence, the nonparallel effect in the solution has contributions from both the streamwise wave number � and
the variation of shape function in � . Substituting equation (22) into equation (16), we have


�
� �
� �

� 
�
� �
�
�
� 
� ��� �

% ! 

 �#%#
�
�
�

� � �
� � �

�  �#%'
� �

� � �
� � � �

�  �' ' � � ��
� �

�
(23)

where matrices 
� , 
� , and 
� are defined by


� � � �
� �
� � � �  �#%#

�
�
� %"!

� � �  �# �
� � %"!


� � � � � �
�
 #%'

� ��%"!
� � �  �# �

�	� %"! (24)


� � � � � � � � � �
�
� � �
� �

� � � , �
� �

� 
 � � ����
�
�
� �  �#%#
�
�
� % !

� � �  �# �
� � �	� %"!

� � �  ���
�
�
� % ! �

This PDE differs from the linearized Navier-Stokes equations (eq. (16)) only in the terms associated with
the wave part � . In fact, Guo, Malik, and Chang (ref. [17]), introduced a wave part in the LNS solver
to reduce the number of grid points in � required to resolve the oscillatory wave and thereby increase the
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computational efficiency. The LNS solution procedure described in the previous section can be used for
equation (23). A marching solution is more efficient if we can parabolize equation (23). To this end, we
neglect the viscous derivatives in � and equation (23) reduces to


�
� �
� �

� 
�
� �
�
�
� 
� � �

 �' '
%"!

� � �
�
� � (25)

Chang et. al. (ref. [2]) pointed out that equation (25) is only “nearly parabolic” due to the streamwise pres-
sure gradient term (

� & � " � � ) inherited from the original Navier-Stokes equation (1). Numerical instability
similar to that observed in the parabolized Navier-Stokes equations (PNS) (ref. [21]) would occur if one
attempted to solve equation (25) by using a small enough marching stepsize in � . Chang et al. (ref. [2]) fur-
ther suggested that the Vigneron’s approximation (ref. [21]) may be used to suppress numerical instability.
Li and Malik (ref. [22]) used Fourier analysis to prove the existence of numerical instability and quantify
the numerical instability bound.

In LASTRAC, equation (25) is solved by using a marching procedure. For small marching step sizes, the
streamwise disturbance pressure gradient is treated as

� & �� �
� 
 � � 
& ���

� 
&� �
� � ��� � ���� � � 	


 � � � �����
(26)

where 
& is the pressure shape-function. The contribution from the wave part
�
� 
& is completely retained in

the 
� � term in equation (25), and the contribution from the shape-function part is approximated by the
Vigneron parameter

�
determined by

� ��� . � � � 
 ��� � �# �
(27)

where
� .

is a coefficient to control the PNS approximation and � # is the local streamwise Mach number. In
the incompressible limit or

� . ���
, this approach is equivalent to neglecting the

� 
& " � � part in equation (26)
completely. For locally supersonic flow, equation (27) does not alter the governing equations since

� � �
(assuming

� . � �
). For an instability wave with ������ , part of the elliptic behavior is absorbed in the wave

part; if the marching step size is large enough, then Vigneron’s approximation is not necessary (
� � �

).
However, for a mode with �

�!�
, equation (27) must be used to compute

�
in equation (26). Examples are

Görtler vortex mode, the mean flow distortion mode (the 
 � � ��� mode), or stationary vortex modes ( 
 � � � �
and

� ���� ) in the nonlinear PSE calculations.

The wave decomposition in equation (22) is nonunique because we can place the wave part in either
�

or
� . Ideally, we should place as much oscillatory wave in the � as possible to minimize the shape-function
(
�

) variation in � . Therefore, a low-order finite difference scheme in � is sufficient. Assume a disturbance
quantity

� � (e.g., peak mass flow rate, peak temperature, or disturbance kinetic energy) is selected to “nor-
malize” the decomposition and obtain a wave number � � . Then the “effective” wave number � � should
include the part from the normalized wave number � � and the variation of the shape-function, i.e.,

� � � � � � �
�
� �

� � �� � (28)

The real part of � � represents the phase of the disturbance and the imaginary part gives the growth rate, both
corresponding to the variable

� � chosen. For a given location � , equation (28) may be applied repeatedly
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to the selected
� � until the change in � � is small. Hence most of the oscillatory motion is contained in �

for the variable
� � . The solution then marches to the next � location. Typically, three to five iterations are

enough for the linear PSE.

In references [2, 23], various flow variables
� � were used to normalize the wave decomposition and the PSE

results were shown to be insensitive to the variable selected. In LASTRAC, the kinetic energy integral

����� ��� '��	� �
! 
 
��
 
� � 
� 
 
�+� 
� 
 
� � � � (29)

is used to normalize � via the following normalization

� � � � � � �
����� �

'��	�
�

! 
 
� 
 � 
�� � � 
� 
 � 
�� � � 
� 
 � 
�� �
� � � (30)

In equations (29) and (30), the superscript 
 represent the complex conjugate.

In a nonparallel (growing) boundary layer or shear layer, the streamwise wave number � obtained from
the PSE solution does not represent the true physical wave number and growth rates. The physical growth
rates and wave numbers depend on the flow quantity and location inside the boundary layer. The effective
streamwise wave number is evaluated using

� � � �
� �

�
� �

� � �� � (31)

where
� � is a disturbance quantity evaluated at certain � location. The imaginary part of

�
� � represents the

disturbance growth rate. In general, numerical results indicate that � � varies slowly near the critical layer
where disturbance reaches a maximum value. Therefore, nonparallel growth rate is usually evaluated at the
location where a chosen disturbance quantity peaks. Alternatively, one can use an integral quantity such as
kinetic energy (eq. (29)) to evaluate the “averaged” nonparallel growth rate. LASTRAC computes growth
rates for mass flow rate, five dependent flow variables, and kinetic energy and writes them in the output.

2.4. Nonlinear Parabolized Stability Equations

Similar to the derivation in linear PSE, for a Fourier mode 
�� � � � � � , the mode shape is decomposed into
two parts:

	
��� � � ��� 
 � � � � � ��� 
 � � (32)

� ��� 
 � � � � � ������ �
��� �
	 ��� 	

(33)

where
� ��� � 
 
& ��� � 
� ��� � 
� ��� � 
� ��� � 
0 � � � is the shape-function for the Fourier mode 
�� � � � and � � � is

the associated streamwise wave number. Substituting equation (32) into equation (8) and neglecting the
viscous � derivatives, we have the nonlinear parabolized stability equations for mode 
�� � � � , i.e.,


� ���
� � � �� �

� 
� � �
� � � ��

�
� 
� ��� � � � �

 �' '
%"!

� � � � ��
�
� � � ���

� ��� (34)

where matrices 
� ��� , 
� ��� , and 
� � � are defined by
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� ��� � � �
� �
� � � � ���  �#%#

�
�
� %"!

� � � �  �# �
� � % !


� ��� � � � � �
� ���  #%'
� � % !

� � � �  �# �
�	� % ! (35)


� ��� � � � � � � � � � �
�
� ��� � �
� �

� � � � , �
�	�

� 
 � � � ���
���

�
�
���� �

 �#%#
�
�
� %"!

� �
� �  �# �

� � � � %"!
� � � � �  � �

�
�
� %"!

The left-hand side of equation (34) contains only linear coefficient matrices; all nonlinear terms are included
in the forcing function

� � � , which is the Fourier component of the total forcing
� �

defined as

� � � � � � �
���� � � �
� �

�
�
� �
� � � ����

�
� , �

�	�

�
�
�
�
� � � � � �

%"! 

 �#%#
�
�
�

� � �
� � �

�  �#%'
� �

� � �
� � � �

�  �'(' � � ��
�
�

�  �# �
� � �	�

� � �
� � � �

�  �' �
� �

� � �
�
�
�
�
�  �� �

�
�
�

� � �
�
� �
�

(36)

where the disturbance vector
�

is defined in physical space (see eq. (9)). Nonlinear forcing for each Fourier
mode is defined by the following Fourier transform:

� � 
 � � � � � � � � �
��

� � � �
��

��� � �
� � � 
 � � � � � ��� ��� � � �������

(37)

The forcing term
� ��� for a given Fourier mode 
�� � � � can be evaluated by collecting all nonlinear terms

contributing to it. For instance, the 
 � ���
� mode interacts quadratically with the 
 ��� ��� mode to influence the

 �����
� mode. In LASTRAC, nonlinear forcing terms are evaluated by computing

� �
in physical space and

then transforming
� �

back into the wave number space
� ��� .

The nonlinear forcing term on the right-hand side of equation (34) is a function of various Fourier modes.
Solving this coupled PDE in an implicit fashion would require a time-consuming solution of a large full
matrix that is only feasible when a small number of Fourier modes are included in the calculation. In
LASTRAC, we use an iterative method to solve the system of coupled equations. Each Fourier mode is
solved independently by using the forcing computed from the previous iteration. The iterative procedure
is repeated until the L2 norm of the shape-function is less than a predetermined tolerance. The iterative
method is robust for small to moderate disturbance amplitudes and is easier to parallelize than the implicit
method. When strong nonlinear interaction takes place, the right-hand side forcing carries more weight
than the left-hand side linear operator in equation (34). Consequently, numerical instability may occur for
the iterative procedure. Numerical experiments indicate that including the mean flow distortion (the 
 � � ���
Fourier mode) in the left-hand side linear operator can stabilize the iterative procedure. Alternatively, when
strong nonlinear interaction takes place, the nonlinear operator may be stabilized by adding a subgrid scale
model, similar to that in large eddy simulations, in the nonlinear iterative procedure. This subgrid scale
model will be implemented in the future release.
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2.5. Boundary Conditions

To close the problem, we need boundary conditions at both ends of the domain in the wall-normal direction.
At the wall, we use the no slip conditions


� � 
� � 
�!� 
0 ��� (38)

For nonlinear PSE, equation (38) is applied for all Fourier modes. For the solution of a set of coupled
ODEs involved in the linear stability theory, or when a two-point compact scheme (ref. [24]) is used for
the PDEs involved in the PSE approach, only four boundary conditions are necessary at the wall boundary
and equation (38) suffices. In LASTRAC, a central-difference scheme is used; thus, we need one more
condition. It has been found that either the continuity equation or normal momentum equation can be used
as the fifth auxiliary condition. In LASTRAC, the continuity equation is used.

In the free-stream, the Dirichlet boundary conditions


� � 
� � 
��� 
0 ��� � ����� � (39)

are used. Equation (39) works well for subsonic modes. For supersonic modes, the disturbance has a
non-decaying oscillatory structure in the free-stream; hence, the use of a Dirichlet condition will cause
spurious reflection. In this case, we can use the nonreflecting boundary condition at the far field. These
nonreflecting boundary conditions are derived, as suggested by Thompson (ref. [25]), based on the inviscid
Euler equations because viscous effects are negligible in the farfield. The inviscid disturbance equations at
the farfield can be written as

� ������ � �
� �

���
� �

��� 
 �
��
�
� ,

� �

�
�
�
�
� � � ���

(40)

In equation (40), all coefficient matrices are identical to those given in equation (8), except
� 


, which is
defined as

� 
 � � 
 ���

 � � � �

where
�

is the left eigenvector matrix of the product of the coefficient matrix
� � � � given in equation (8),

and
� 


is the modified diagonal eigenvalue matrix defined by

� 
 � � ���
	 
�� � � 
 � � �
� � �
in which ��� are the corresponding eigenvalues of the matrix

� � � � .

Equation (40) contains only the outgoing characteristic equations, and it suppresses numerical reflections
from the far field. Numerical experiments indicate that the use of these nonreflecting boundary conditions
allows a smaller computational domain; thus more grid points can be used to resolve the important distur-
bance structure inside the shear layer. However, a large number of grid points must be used and the far field
conditions can only be applied at a large wall-normal distance if the Dirichlet conditions (eq. (39)) are used.

For nonlinear PSE, the above Dirichlet or nonreflecting condition may be applied for each Fourier mode with
the exception of the mean flow distortion mode 
 � � ��� . For incompressible boundary layers, the mean flow
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distortion mode should be allowed to compensate for the change in displacement thickness due to nonlinear
interaction. In this case, the following equation


��!
! �
� 
� !
!�
�
� 
� !
! � 
0 !
! ��� �

is used. For supersonic boundary layers, the nonreflecting condition 40 works equally well.

If a shock is present in the free-stream, the Rankine-Hugoniot shock condition for disturbances suggested by
reference [26] may be used. When the shock is located far away from the boundary layer (e.g., five or more
times the boundary thickness), the effect on the instability wave is very small. The shock boundary con-
dition, as described in reference [27], is implemented in the LASTRAC code for both linear and nonlinear
PSE solvers.

2.6. Discretized Equations

Numerical solutions of the LST or PSE require discretization of the governing equations in both � - and
� -directions. We transform the governing equation to a generalized coordinate system defined by

� � � 
 � � � �
� � � 
 � � � �

After this transformation, the nonlinear PSE becomes

�� ���
� � ���� � � �� ���

� � � �� � � �� � � � � � � � ���� � � � � �� � � � � ���
� ��� (41)

where the transformed coefficient matrices are defined by
�� � � � � # 
� ��� � � ' 
� � �
�� � � � � # 
� ��� � � ' 
� � � ���

 �' '
% !

�
� � 


� �'
� �

�� � � � 
� ��� (42)
� ��� � � �'  �' '

%"!
with the Jacobian of transformation defined as

� � � # � ' � � ' � #

Using this transformation, we map a computational grid with arbitrary clustering into a uniform mesh with
constant increments in

�
and � coordinates. The metrics

� #
, � # , etc. may be calculated numerically by using

a finite-difference scheme. The main advantage of using a general coordinate system over more traditional
analytical mapping is the flexibility of grid clustering.

Three streamwise grid distributions may be chosen in LASTRAC. The first one adopts the same grid used in
the basic flow calculations. The second and third ones use constant increments of the streamwise coordinate
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Figure 3: Four normal grid distributions for stability calculations.

� and the Reynolds number % (defined in eq. (6)), respectively. Interpolations are used for streamwise
locations not coinciding with the grid used in the basic flow.

As depicted in figure 3, there are four different types of grids in the wall-normal direction in LASTRAC.
In the following discussion, we use a parameter � (

��� � � �
) to denote the mapped coordinate. It has

a constant increment � " � with
�

representing the number of points used. The first grid clusters the grid
points near the wall according to the following algebraic mapping:

� �
� �� � � (43)

where
� � �	� � " � ��� # . The parameter

�
controls the clustering near the wall. The second grid is designed

for high supersonic and hypersonic boundary layers. It clusters grid points both near the wall and the critical
layer. The critical layer location varies with the phase speed of the instability wave; for hypersonic boundary
layers, it is located close to the boundary layer edge. Let ��� denote the critical layer location. The algebraic
mapping defined in two regions can be written as

� � ��� 
 � �
	���
 � � � � " ��� ��� � � ���
�
�

��� �
� � �� � � �

�
��� � �

�
� ��� # (44)

where � � and � � represent the mapped coordinate in the two regions. The parameters
�

and
�

are

� � ��� � " 
 � ��� # � ��� �
� �

� ��� # � � �
Half of the grid points are used in both regions. These mappings were suggested by reference [28].

The third grid is similar to the second one except that it clusters points only near the critical layer. The
interior hyperbolic mapping suggested by reference [29] is used for this grid type. For stability problems
such as a shear layer, good resolution is needed only near the critical layer and this grid type is well suited.
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If a shock is present in the free-stream boundary, or if the eigenfunction exhibits an oscillatory structure in
the free-stream as in a supersonic mode (see ref. [27]), then a uniform grid in the free-stream better resolves
the disturbance eigenfunction structure. In the fourth grid, we prescribe the increment in the free-stream � �
and let � � denote the location where the grid increment in the second region in equation (44) exceeds � � .
The mapping becomes

� � � � 
 � �
	���
 � � � � " ��� ��� � � � �
� � � � �

� � �� � � �
� � � � � � � � (45)

� � � �
� � � 
 � ��� # � � �

� � � �
� � � � ��� #

and the number of points in the third region is
� � � 
 � ��� # � � �

� " � � . This “shock grid” works very well
for supersonic modes.

We use indices
�

and
�

to denote the grid index along the streamwise and wall-normal directions, respectively.
In the streamwise direction, we use either the first-order scheme

� �
� � �

� ��� � � � � � � � �
� � (46)

or the second-order scheme

� �
� � � �

� ��� � � ��� � � � � � � � � � � � �� � � (47)

where
� � � �

for convenience. Numerical calculations indicate that a first-order scheme works well for
most of the cases when more than three or four points per wave length are used in the streamwise direction.

In the wall-normal direction, we employ the fourth-order central-difference scheme

� �
� � � � � ��� � 
 � � � � ��� � 
 � ��� � ��� � � � � � ��� � � ���� � �� � �
� � � � � � ��� � 
 � ���� � ��� � 
 � � � ��� ��� � ���� � ��� � � � � � ��� � � ���� � � � � (48)

For the grid points next to the boundaries, the five-point scheme (eq. (48)) is replaced with the two-point
second-order scheme

� �
� � � � ��� � 
 � � � ��� � � �� � �� � �
� � � � � ��� � 
 � � � � ��� � � � ��� � � �

� � � (49)

Substituting the above discretized equations into the governing equations, equation (34), we have
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� ������ ���� ��� � � � � ���� (50)

where � ���� � 
 � ��� � � � ��� � � � � � � � � � � ��� ��� � is the solution vector for
� '

points in the wall normal direction. the
matrix operator

� ���� is a block pentadiagonal matrix with a length of
� '

and a block size of
	 ��	

. It is a
function of linear Jacobian matrices such as � �

,
� �

, etc. and the wave numbers � , � ��� , and � . The first
vector on the right-hand side,

� � � , is due to the discretization of the term involving
� � " � � and can be

expressed as a function of the solution at the previous station, � � � ���� . The vector
� ���� is due to nonlinear

forcing.

For linear stability theory, the
�

derivative vanishes and there is no forcing; the discretized equation becomes

� � ��� (51)

where the subscripts � �
and superscripts

�
have been dropped for clarity. The

�
operator contains only �

derivatives for station
�
. This homogeneous equation coupled with the homogeneous boundary conditions

constitutes an eigenvalue problem. Its solution procedure will be discussed in the following sections.

2.7. Eigenvalue Solution Procedure

In the linear stability theory, the governing equations reduce to a set of ODEs, equation (20), or its discretized
form, equation (51). Note that the operator

�
in equation (51) is a function of wave numbers:
� � � 
�� � � � � �

In the spatial stability problem, we are looking for the spatial eigenvalue � for a given disturbance frequency
� and spanwise wave number � . In LASTRAC, only the spatial stability problem described by the dispersion
relation, �

�
� 
�� � � � is implemented.

We note that in equation (51),
�

is linear in � and contains terms of �
�

due to the viscous terms. If we
neglect the viscous terms in

�
, equation (51) can be recast to

� � � ��� � (52)

where
�

and � are block matrices. � is only a block diagonal matrix and thus can be easily inverted to give
	 � � � � � ��
 	 ��� (53)

in which 
 is the identity matrix. This eigenvalue problem can be solved by a conventional eigenvalue
algorithm such as QR or LR. In LASTRAC, two options are provided: the complex eigenvalue solver
from the LAPACK (http://www.netlib.org/lapack/) or a built-in complex LR eigenvalue solver. A global
eigenvalue spectrum can then be obtained from these eigenvalue solvers. This global spectrum will contain
all discrete modes and the continuous spectrum. Discrete modes can be easily identified if they are unstable.
However, these unstable eigenvalues are not exact due to the neglected viscous terms.

We can solve the exact eigenvalue problem by using a local eigenvalue search. Here, local is used in contrast
to the global eigenvalue spectrum. An initial guess of the eigenvalue � is provided before the local search
starts. Let � ��� denote the target equation that needs to be satisfied. Newton’s method gives
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�
� 
 � � �

� � � � " 

� ��
�
� �

(54)

in which superscript
�

denotes the iteration count. The quantity
� ��" � � can be evaluated numerically by

using a small increment of � . When the iteration converges, the target equation � ��� is satisfied. We can
use the second-order Newton’s method as suggested by reference [28] to increase the convergence radius.
The target equation is usually chosen to be one of the boundary conditions at the wall (either 
� � �

or

0 �!� ). We replace this chosen equation by a normalization equation (usually by setting 
& � � ). Equation

(51) is solved with the modified boundary conditions. Equation (54) is then employed to update � until the
replaced wall boundary condition is satisfied. Because we use the exact equation, at convergence, the correct
� is obtained without any approximation. Newton’s method does not guarantee convergence. Therefore, the
eigenvalue search procedure usually begins with a global eigenvalue search. The resulting global eigenvalue
spectrum provides a good initial guess for the local eigenvalue search. In addition, a second-order Newton’s
method is used to increase the radius of convergence, and hence the robustness of the eigenvalue search
procedure. We note that instead of replacing one of the wall conditions, we can relax any discretized
equation inside the domain and replace it with a normalization equation at the point under consideration
and then iterate on � using the Newton’s method until the relaxed discretized equation is satisfied. Usually
the normal momentum or energy equation near the critical layer is relaxed. This procedure is quite robust
in tracking eigenvalues, especially in the stable region. For jet or shear layers, we need to use a field point
equation as the target because the eigenfunction variation diminishes near the center line.

In summary, the eigenvalue solution thus involves two main steps. For a given spatial location and 
�� � � � ,
a global eigenvalue search is performed and unstable modes are selected from the global spectrum. These
selected modes are then fed into the local eigenvalue solvers as initial guesses. Converged modes from
the local eigenvalue search are probably good discrete modes. When multiple unstable modes are present,
LASTRAC selects the most unstable mode automatically. With this combined procedure, the eigenvalue
search becomes much more robust as compared to other numerical methods based on shooting techniques.

2.8. Nonparallel Eigenvalue Solution Procedure

The PSE formulation requires an initial condition to start the streamwise marching procedure. A simple
way to initiate marching is to use the eigenfunction obtained from the quasi-parallel linear stability theory
(LST) solution. However, because of the neglected nonparallel terms, the marching PSE solution obtained
this way would have a “transient” region where the PSE solution attempts to slowly adjust the inconsistent
parallel eigenfunctions. This transient effect, more noticeable for supersonic boundary layers, is a result of
the difference in governing equations between LST and PSE. We can use the multiple-scale method (refs.
[30, 31]) to account for the nonparallel effect, and the eigenfunction generated may be used to initiate the
PSE marching procedure in order to alleviate the transient effect.

LASTRAC offers an alternative nonparallel eigensolution (NES) procedure based on the discretized parab-
olized governing equations. The governing equation is locally transformed to a general coordinate system
by using � � � 
 � � � �

� � � 
 � � � �
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Numerical calculation is then performed in the 
 � � � � plane. Using first-order finite difference in
�
, the

governing linear PSE at two consecutive solution locations,
�

and
� � �

, may be written as

�� � � � � �� � 
 � � 
 � � � � � � �� �
� � �� � � � ����

� �
� � � �� � �

�� � 
 � � � 
 � � �� � 
 �

 � � 
 � � � � � � �� � 
 �
� � � 
 �� � � � ���

� � 
 �
� � � � 
 �� � � (55)

For this equation, we assume that the second derivative in
�

is negligible and
� � " � � is the same for both

point
�

and
� � �

. This assumption is equivalent to taking a forward difference for point
�

and a backward
difference for point

� ���
. The streamwise wave number � � and � � 
 � is related by

� � 
 � � � � � � �
���

� � (56)

in which
� � is the streamwise distance between points

�
and

� � �
.

If we define the combined shape-function vector � as

� ��� � �� � 
 ���
then equation (55) may be rewritten as

�� � � �� � �
� �

� � �
� �
� � � (57)

where matrices
��

,
��

, and
� 

are

�� � � �� � � �� � �� �� �� � 
 � �� � 
 � � �� � 
 � �
�� � � �� � �

� �� � 
 � � (58)

� � � � ����
� � �
� � ����

� � 
 � �
At the boundaries, homogeneous boundary conditions (e.g., no slip at the wall and Dirichlet or nonreflecting
conditions at free-stream) may be applied for both

�
and

� � �
stations. Equation (57) is a set of homogeneous

ordinary differential equations (ODEs). After discretization in � , Equation (57) can be cast into the following
nonparallel eigenvalue problem:

� � . 
 � � ��� (59)

where
� � . � � � . 
�� � � � � � " ��� � � � . For a given disturbance 
�� � � � , eigenvalues � and � � " ��� need to be

found. Unlike the LST eigenvalue problem, the NES has one more unknown: � � " ��� . Because the variation
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of � is generally small, our first approximation is that � � " ��� ��� . Thus the eigenvalue problem is similar
to the LST case, except that the

� � . operator contains solutions at two consecutive streamwise stations and
requires more time to solve (for both local and global eigenvalue searches). In fact, obtaining the global
spectrum with both � and � � " ��� as unknowns is nontrivial. In LASTRAC, we assume � � " ��� � � for the
solution of the global eigenvalue spectrum.

For the local nonparallel eigenvalue search, as mentioned previously, we may assume � � � � � 
 � . The
solution procedure is then similar to the LST case. Alternatively, we may use a local Newton’s iteration to
solve for � � and � � 
 � simultaneously. To this end, we need two target conditions for the iteration procedure.
If we use � -velocity at the wall, then the wall boundary condition 
� � 
 ��� � 
� � 
 � 
 ��� � �

is replaced by

& � 
 ��� � 
& � 
 �

 ��� � �

. This condition implies that we will normalize the eigenfunctions such that the
pressure eigenfunction is unity at the wall. The relaxed � -velocity condition at the wall becomes the target
of the Newton iterations. In this case, we further assume that the pressure shape-function at the wall does not
vary from station

�
to

� � �
. For most cases, the wall pressure variation � 
& " ��� is small and the approximation

given previously is valid. If
� � � 
� � 
 ��� and

� � � 
� � 
 � 
 ��� , thus by using first-order expansion, we have

� � �
� � 


���
��
� �
� �

� � � 

���
��

� � 
 �
� �

� � 
 � (60)

� � � � � 

��� ��
� �
� �

� � � 

��� ��
� � 
 �

� �
� � 
 �

where
�
� � � �

� 
 �� �
�
�� and

�
� � 
 � � �

� 
 �� 
 � � �
�� 
 � denote the change of eigenvalues from iteration

�
to

iteration
� �!�

. Solution of equation (60) provides two eigenvalues: � � and � � 
 � . The eigenvalue iteration
is repeated until

�
� � and

�
� � 
 � are both smaller than a prescribed tolerance. We have also used the wall

temperature instead of the � -velocity as the target condition for Newton’s iterations; numerical experiments
indicate that both targets worked well. For hypersonic boundary layers, relaxing wall temperature tends to
be more robust than wall velocity.

This new nonparallel eigenvalue formulation has several distinct characteristics. First, for every eigensolu-
tion, we obtain eigenfunctions at two consecutive locations. Therefore, streamwise derivatives and thus the
effective nonparallel growth rates accounting for this streamwise variation may be evaluated. Second, local
eigenvalue search using only one alpha ( � � " ��� ��� ) is more robust because the global eigenvalue solver is a
good approximation to the local solver. However, due to the neglected � � " ��� , this approximation produces
a small but noticeable transient effect (smaller than that produced by using the LST solutions) if we use the
obtained eigenmode to initiate the PSE marching procedure. Again, this transient effect is more pronounced
in supersonic than in low-speed boundary layers for 2-D flows. For crossflow instability, the variation of �
near the leading edge is usually large and the one-alpha procedure yields a noticeable transient effect even
at low speed. Furthermore, even though this transient effect is noticeable in the disturbance growth rate, it
is much less so for the disturbance amplitude that represents the integrated effect of the growth rate. Fig-
ure 4 compares linear PSE solutions obtained by starting with the one-alpha, two-alpha, and quasi-parallel
LST eigenfunctions. The solution initiated far upstream is also plotted as a baseline solution. Clearly, the
two-alpha eigenfunction produces the least transient effect.

On the other hand, the two-alpha iteration procedure is less robust because it requires convergence of two
eigenvalues and only a first-order Newton’s method is employed. Deriving a second-order method is possible
but would require introducing more target conditions. The lack of robustness also stems from inconsistency
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Figure 4: Linear PSE solution obtained by using three different initial eigenfunctions, along with solution
initiated far upstream to assess transient effect.

between global and local eigenvalue solvers (noted that in the global solver, we assume � � " ��� � � ). The
initial guess of � � " ��� is important for the two-alpha procedure. We found that for 2-D boundary layers,
using the guess from the global solver and imposing � � " ��� � � generally leads to a converged solution.
However, for crossflow instability near the leading edge of a swept wing, providing a good guess of � � " ���
is crucial to convergence of the eigenvalue search. LASTRAC uses several built-in � � " ��� guesses for the
two-alpha eigenvalue search. However, in some cases, users need to provide a good guess for � � " ��� to get
a converged eigenvalue. We also found that, in some cases, the eigensolution obtained with the two-alpha
procedure gives smoother pressure eigenfunction in the wall normal direction.

As discussed in the previous section, the determination of � is nonunique within the nonparallel frame-
work. The above nonparallel eigenvalue formulation typically generates more discrete eigenmodes than
its quasi-parallel LST counterpart. Therefore, selecting eigenmodes of interest from the global eigenvalue
spectrum becomes more difficult. Users may need to provide certain additional criteria to filter out spurious
modes. Interestingly, one quasi-parallel eigenmode split into two modes in the corresponding nonparallel
global spectrum, mainly because we solved two consecutive eigensolutions simultaneously and assumed
that � � � � � 
 � . These two eigenmodes correspond to solutions at two consecutive stations and appear as
the common � solutions. We found that with the two-alpha local eigenvalue search, two split modes from
the global spectrum converge to the same value during the local eigenvalue search. Mathematically, the
nonparallel eigenvalue formulation introduces more degrees of freedom in the system and thus allows more
discrete eigenmodes (other than the continuous spectrum). The mode closely associated with the unstable
mode given by the parallel LST still appears as an eigenmode in most cases. Near the leading edge of the
boundary layer, instability wave formation and evolution is governed by the receptivity process; therefore,
the nonparallel eigenmode may or may not be relevant from the theoretical standpoint. LASTRAC selects
the most unstable mode that gives the largest growth rate at the location of interest to initiate the marching
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procedure. Numerical experiments indicate that the eigenvalue and eigenfunction generated by the NES
(both one- and two-alpha approaches) produce a smaller transient effect than those from the quasi-parallel
LST solution.



Chapter 3

Code Development

The LASTRAC code was developed from scratch. Several guiding principles were set forth in the initial
stage of LASTRAC development. They are:

� Object-oriented (OO) design and implementation

� Generic programming using templates

� Optimization to avoid abstraction penalties and ensure efficiency

� Multithread and message passing interface (MPI) based parallelization

� Source code control and some configuration management

The first two items limit the choice of programming language to C++ because it is the only mature language
that supports both object-oriented and generic programming. The OO paradigm has been recognized by
the software world as a mainstream approach for software development. An OO software system may take
longer to develop, but it is much easier to maintain and extend as the project progresses. The concepts
of data abstraction, inheritance, and polymorphism are the themes of an OO language. The principle of
separation of interface and implementation makes software modules more independent of one another.

The common concept for modern software development is to decompose the software into objects. Each
object is derived from a software structure called class. Objects derived from the same class share a common
interface, which defines the data structure and operations, usually called functions, that operating on the data
structure. The clients of these objects only need to know about the interface–not the implementation details.
In this way, new objects may be derived and added to the system without changing the common interface
or any existing object client’s code. Code reuse is thus achieved via reciting common interfaces for various
class objects–not through cut-and-paste of existing codes.

The OO design procedure typically employs a formal requirement analysis along with use case studies. The
Unified Modeling Language (UML) (ref. [32]) is a widely used tool for OO analysis and design. Due to
the lack of resources, we did not use UML for analysis and design. Instead, the structure of LASTRAC was
laid out based on numerical formulation; then, different design patterns were applied when appropriate. The
design patterns used in LASTRAC came mostly from Gamma et al. (ref. [33]) with some modifications to

30
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cope with numerical efficiency. A design pattern is a set of objects and interfaces that occur over and over
again in a software system; hence, it is also a solution to a software problem in a context. Many patterns
proposed by Gamma et al. are used in LASTRAC. For example, the Singleton pattern is used for input and
control parameters, a Factory Method is used to generate objects on the fly, and the Observer pattern is used
to let the metric class, coordinate transformation class, and Jacobian matrices class update their contents
when the solution marches to the next station. The Template Method and Command patterns are used to
implement a multithread class that allows a nonstatic class member function to be called within a C-style
thread routine.

Generic programming (ref. [34]) is a new paradigm that allows a programmer to introduce a parameterized
class member or member function in a function or class definition. The introduced parameter is called a
template. A routine designed this way allows unrelated classes or algorithms to be plugged in as a template
parameter as long as the plugged-in classes fulfill the compilation requirement. For example, one can design
a numerical integration class that allows various approximation rules be specified as a template parameter.
The C++ programming language includes a powerful library called standard template library (STL) based
on the generic programming concept. LASTRAC uses templates extensively in the class design. The STL
containers and algorithms are used to ensure efficiency and flexibility.

3.1. LASTRAC Code Design

Discussing the details of the LASTRAC code design and structure is beyond the scope of this paper. Here,
we only describe important elements of the code structure. Users of LASTRAC need to prepare two files:
one contains the mean flow, and the other has the input parameters instructing which computation (LST,
linear or nonlinear PSE, etc.) needs to be performed. The input parameter file is read by LASTRAC through
a parser. The parser takes an input format similar to the namelist format in FORTRAN but allows C++ style
comments. LASTRAC performs a “sanity check” for the input parameter file and flags errors if any user
mistake is found. The mean flow reader was designed to be a hierarchy of classes that can be extended for
perfect gas or reacting flow, and 2-D or 3-D through inheritance of the abstract class.

The core part of the code uses the observer pattern (see reference [33]) where two subjects, LocalSubject
and MarchingSubject, perform a local eigenvalue solution and a marching PSE solution, respectively. The
observers are the coordinate transformation, metric and derivatives, and Jacobian classes. These classes
update their states when the LocalSubject and MarchingSubject finish their calculations and move on to
the next location. The nonlinear marching subject communicates with LocalSubject and MarchingSubject
to obtain a local eigenvalue for initiating the marching and to solve for each individual mode during the
nonlinear iteration. It has several logistic classes, such as a Fourier container class, to perform fast Fourier
transform and to handle Fourier-mode related operations.

The finite difference operation and boundary condition treatment is handled by using a template class and
the generic programming paradigm. These generic classes would work for different orders of differentiation
and variable types such as real or complex. The left-hand side operator of the PSE and eigenvalue solver
were cast in an operator form to facilitate future maintenance.

To achieve computational efficiency in the LASTRAC code design, we tried to avoid using many fine-
grained objects. The use of templates in generic programming allows substitution of template parameters
at compile time; consequently, the code can be optimized for run-time performance. In LASTRAC, the
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template meta-programming technique is used to optimize the matrix multiplication procedure and the block
matrix solvers. Extensive use of generic programming and template utilities makes LASTRAC as efficient
as an earlier code written in FORTRAN 77.

Parallelization for the nonlinear PSE option in LASTRAC is implemented by using the multithread tech-
nique in conjunction with the more traditional MPI approach. The Posix thread is used in LASTRAC to
guarantee portability. Multithread and MPI options are only implemented for nonlinear PSE calculations.
Linear options, including LST and linear PSE, can only be run as a single-thread application. Because linear
calculations are mode independent, users can launch many LASTRAC runs concurrently on a multiprocessor
or clustered environment.

For nonlinear PSE calculations, each Fourier mode is solved by a thread or a process under MPI; however,
the nonlinear forcing terms have to be computed collectively. Parallelization of nonlinear forcing is only per-
formed through computing terms in physical space simultaneously. Each MPI process may spawn multiple
threads. For a multiprocessor node in a cluster, this combined thread and MPI approach makes LASTRAC
run more efficiently.

Source code control and configuration management are reinforced by using the public domain software
CVS. Unit testing was accomplished for major modules during the initial development stage. Due to lack of
resources, we do not follow unit and integration testing procedures rigorously. A semiautomated integration
testing procedure is also implemented.

LASTRAC code has been ported to all major Unix platforms. In the release, we include executables for
Linux Intel, SUN Solaris, and SGI. We are planning to port the code for Linux Alpha and Windows in the
near future.

3.2. Code Validation

The LASTRAC code was validated by comparing its results with those obtained in the literature and by other
publicly available codes. The first case used for validation was the quasi-parallel LST results published by
Malik (ref. [28]). The test cases range from low-speed (incompressible) to hypersonic conditions. Linear
and nonlinear PSE results were compared with those given in references [2, 23, 35]. For swept wing bound-
ary layers, the Arizona State University test configuration (ref. [36]) was used for validation, and results
were compared with Malik et al. (ref. [3]).

We also compared solutions from LASTRAC with experimental data, including the incompressible subhar-
monic breakdown (ref. [37]) and Stetson’s Mach 8 sharp cone experiments (ref. [7]). A recent comparison
with a DNS code developed by Liu & Jiang (ref. [38]) for both a flat plate and an infinite swept wing exhibits
excellent agreements between PSE and DNS. Those results will be published in a separate paper.

We also compare the LASTRAC solutions with those obtained from previously developed codes such as
EMALIK2D and ECLIPSE. The agreement is very good. Further validations are planned when new experi-
mental data become available.



Chapter 4

Basic Flow Computation

LASTRAC does not include a module for basic flow computation. Users are responsible for preparing a
mean flow file in a FORTRAN unformatted binary format. An interface for reading in a C style binary mean
flow file will be implemented in the future release.

4.1. Binary Mean Flow File Format

The mean flow file should be written by using the FORTRAN unformatted output (assumed to be unit 10)
as follows:

character*64 title

...
open(unit=10, file = ’meanflow.out’, form = ’unformatted’)
...

where title is a title string with a length of 64. The mean flow is then written as

...
write(10) title
write(10) n_station

write(10) igas, iunit, prandtl, pfs, nsp

do n = 1, n_station

write(10) istat, npts, x, rl, Rel, xcurvt, radius, drdx
write(10) t_e, u_e, rho_e
write(10) (y(k), k = 1, npts)
write(10) (u(k), k = 1, npts)
write(10) (v(k), k = 1, npts)
write(10) (w(k), k = 1, npts)
write(10) (t(k), k = 1, npts)
write(10) (p(k), k = 1, npts)

33
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enddo
...

Definitions of the FORTRAN parameters are as follows:

title: Title of the mean flow with a length of 64 characters.

n station: Total number of stations in the profiles output.

igas: Use 1 for perfect gas. In the future release, equilibrium and finite-rate options will be added.

iunit: Use 0 for imperial (U.S. customary) units and 1 for SI units. Unit only applies to dimensional
quantities. The units for a length are meter and foot, for SI and imperial units, respectively.
Velocity units are m/s and ft/s, temperature K and

�

R, and density kg/m � and lb � - sec
�
/ft
	
,

respectively.

prandtl: Prandtl number of the mean flow.

pfs: Free-stream static pressure (dimensional in units defined by iunit). This input is ignored in the
current release.

nsp: Number of species if non-equilibrium mean flow. Use a value of 0 for perfect gas.

istat: Station number for each group of profiles (for display only, not used).

npts: Number of points in the profiles following.

x: Streamwise coordinate (using a body-fitted coordinate system) of each station (dimensional).
Note that for axisymmetric cones, this is the coordinate along the cone surface, not the axial
coordinate in a cylindrical coordinate system.

rl: Local length scale used to compute Rel and normalize the wall normal coordinate y(k). For
boundary layer flows, the boundary-layer length scale defined by equation (5) is usually used.
For jet flow, the jet diameter (a constant value) may be used. Note that this length scale will
be used by LASTRAC to normalize the growth rate and wave number output; therefore, the
choice should be such that the normalized growth rate value falls in the default growth rate range
(described in the next chapter). If not, the growth rate filters should be adjusted accordingly.

Rel: Local Reynolds number based on rl (see eq. (6)).

xcurvt: Dimensional streamwise curvature (inverse of the radius of curvature).

radius: Local dimensional transverse cone radius (in cylindrical coordinates).

drdx: Nondimensional local derivatives of cylindrical radius with respect to the streamwise coordinate
(x). For an axisymmetric cone, this value would be � � � � where � is the local cone half angle.
If the mean flow is for an infinite-swept boundary layer, input � "�� (where � is the Cartesian
coordinate and � is the chord length) instead of radius. This � "�� input is not used for calculations
but will be written to various output files as a location indicator.
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t e: Dimensional local boundary-layer edge temperature and the value used to normalize the temper-
ature profile.

u e: Dimensional local boundary-layer edge velocity along the body surface and the velocity scale
used to normalize all three velocity profiles. For a jet flow, this value could be the centerline
velocity. For an infinite swept-wing boundary layer, this velocity is along the normal chord
direction and diminishes to a value of zero at the attachment line.

rho e: Dimensional local boundary-layer edge density and the value used to normalize the pressure
profile.

y(k): Nondimensional wall-normal coordinate (normalized by rl).

u(k): Nondimensional streamwise velocity normalized by u e. For infinite swept-wing boundary lay-
ers, this is the velocity component along the normal-chord (normal to the leading edge) direction.

v(k): Nondimensional wall-normal velocity normalized by u e.

w(k): Nondimensional spanwise velocity normalized by u e. For infinite swept-wing boundary layers,
this is the velocity component along the spanwise (attachment line) direction.

t(k): Nondimensional temperature normalized by t e.

p(k): Nondimensional pressure normalized by rho e * u e
�
.

4.2. Boundary-Layer Codes

Two publicly available boundary layer codes have been used to generate most of the test cases described in
the following chapters. The output interface to generate a mean flow file according to the format described
in the previous section has been implemented in these codes.

For general 2-D or axisymmetric boundary layers, we use the bl2d code written by Harris & Blanchard (ref.
[39]). The bl2d code employs the Levy-Lees transformation and computes the solution on the transformed
plane by using a second-order finite difference method. Both planar 2-D and axisymmetric compressible
flow boundary layers can be computed.

For infinite swept-wing boundary layers, we have tested the wingbl2 code by Pruett (ref. [40]). It is a
compressible boundary layer code written specifically for infinite swept wing flows. Governing equations
are also transformed by using the Levy-Lees transformation. A spectral method is used to solve the equa-
tions; therefore, this code is, in general, less efficient than the bl2d code mentioned above. Code validation
was performed for several configurations by comparing results with other swept-wing boundary-layer codes
such as the BLSTA code (ref. [41]).



Chapter 5

Input and Output Description

To run LASTRAC, users must provide an input file in addition to the aforementioned basic flow file. The
input file consists of several lines in the form of:

parameter1 = value1
�

parameter2 = value2 � � � �

A white space or a comma is used to separate tokens. C++ comments such as “//” are allowed anywhere in
the input file. LASTRAC will ignore anything following “//” until the end of the line. Parameters are not
case sensitive. The parameter and value pair can be in different lines as long as they appear consecutively.
For array-type parameters, multiple values separated by comma or space can be used, and a wild card is also
allowed. Some sanity check is provided for the parameters specified. If important errors are found, the code
will flag the error and stop. For less important mistakes, the code simply flags a warning message, uses the
default value, and then continues.

Most of the input parameters have a default value. Users do not need to specify the parameter value if the
default value is to be used. For a numeric parameter, the value is a number. For a boolean parameter, the
value is either true or false. If an input value is of a complex number type, use the format 
 � ��� � ��� in the input
file. The string type input should be contained in a double quote (e.g., ‘‘eigenfunction.dat’’). An
input parameter may be specified more than once. The parameter specified later in the input file overwrites
the previous one.

5.1. Input Parameters

We divide the input parameters into several groups according to their functionality. The first group of input
parameters include the major input that is necessary for every run.

flow type: Identifies the type of flow to be computed. There are three options: bound layer,
jet vortex, and shear layer. The first option (bound layer) is for a
boundary-layer mean flow that has a wall boundary at � 
 ����� �

and a maxi-
mum local streamwise velocity at � 
 � � � � ��� # in the mean flow profile. The
bound layer mean flow could be either two-dimensional or axisymmetric. A
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jet vortex mean flow is the one that has a local maximum streamwise veloc-
ity at � 
 ����� �

and zero velocity in the free-stream. It can be either a planar or
axisymmetric jet. A vortex flow is similar to a jet except that the mean azimuthal
velocity component is non-zero. The shear layer option assumes that the local
maximum and minimum streamwise (either positive or negative) velocities are at
either end of the domain. The default value is flow type = bound layer.

mflow filename: The mean flow file name with a path relative to the location of the LASTRAC exe-
cutable. Using the absolute path is recommended. The file name must be included
in the double quote (e.g., mflow filename = ‘‘/h/u/case1.mflow’’).
No default value is assumed.

nonl pse calc: A boolean parameter to determine whether a nonlinear PSE will be run or not. It
takes a value of true or false. If true, the nonlinear PSE parameters described
later should also be included. The default is nonl pse calc = false.

solution type: Two stability solution methods are available. The first one, solution type =
local eig solution, performs the quasi-parallel or nonparallel local eigen-
value search at each mean flow station specified by the user. N-factor integra-
tion is performed whenever an unstable eigenmode is found. The second method,
marching pse solution, starts with a similar nonparallel eigenvalue search
for each mean flow station. When an unstable mode is found, LASTRAC switches
to the linear PSE marching process and marches downstream to the end location
specified by the user. No default value.

marching method 2d: Users can choose from three marching methods constructed by different stream-
wise grids. The option along station marches from the init station
station until the station specified in final station for every station read in
from the mean flow file. If a local eigenvalue calculation is requested, users may
use step station to skip stations in the marching process. For PSE march-
ing, the step station input is ignored and no station skip is allowed. The
option along xc marches the solution downstream from � � init xc until
� � final xc with a step size of step xc. Similarly, the option along re
(re is based on the Reynolds number defined in equation (6) marches the solution
from init re until final re with a step size of step re. For the latter two
options, mean flow quantities and profiles are interpolated from the station val-
ues read in from the mean flow file. For all three options, the marching step may
be negative if solution type = local eig solution. This allows both
forward and backward marching to be performed for a local eigenvalue analysis.
Default is along station.

init station: Initial marching station for marching method 2d = along station. No
default value.

final station: Final marching station for marching method 2d = along station. No
default value.
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step station: Stability solution is performed for every step station when the parameter
marching method 2d is equal to along station and a local eigenvalue cal-
culation is intended. Default is step station = 1.

init xc: Initial � coordinate in meters for marching method 2d = along xc. No
default value.

final xc: Final � coordinate in meters for marching method 2d = along xc. No de-
fault value.

step xc: Marching step size in meters for marching method 2d = along xc. The
value can be positive or negative. No default value.

init re: Initial Reynolds number for marching method 2d = along re. No default
value.

final re: Final Reynolds number for marching method 2d = along re. No default
value.

step re: Marching step size in Reynolds number if marching method 2d = along re.
The value can be positive or negative. No default value.

freq unit: Determines the unit of frequency or temporal wave number � being inputted. If
freq unit = non dim freq, the value specified for the parameter freq is
the nondimensional wave number � defined in equation (11). If freq unit =
capf freq, freq is a nondimensional frequency defined in equation (12) and
for freq unit = in hertz freq, freq is in Hertz. Default is freq unit
= non dim freq.

beta unit: Determines the unit of spanwise wave number being inputted in the parameter
beta. For a nondimensional spanwise wave number as defined in equation (13),
beta unit = non dim beta is used. The option in mm beta is used when
the inputting beta represents the spanwise wavelength in mm. The second op-
tion nwave axisym beta is used for beta to represent the integer azimuthal
wave number

�
in an axisymmetric boundary layer or jet. The corresponding non-

dimensional wave number is then � � � � " 
 � where

��

is the local cylindrical
radius and � is the length scale. For axisymmetric configurations, the use of an in-
teger azimuthal wave number is more physical than an arbitrary real wave number
and thus is recommended.

The previous three options for beta unit are for a distinctive spanwise wave
number. For cases where an optimized (maximum growth rate with respect to
� ) wave number is to be found, users do not provide the spanwise wave number.
Instead, other information such as wave angle is specified and the code will at-
tempt to find the spanwise wave number that has a maximized growth rate. For
2-D boundary layers, we enter beta unit = wave angle beta and provide
a guess of wave angle with respect to the mean flow direction in beta. A good
guess for the oblique first mode in compressible boundary layer is around

 �� �
.
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This guess need not be very accurate because LASTRAC will attempt to find in-
stability modes around the value provided. For infinite swept wing boundary lay-
ers, we enter beta unit = l over d beta and provide a guess for the total
wavelength to boundary layer thickness ratio( � "�$ ) in beta and a guess of wave
angle in wave angle. This �#"�$ ratio is about

�
(and a wave angle around

�����
)

for stationary crossflow instability mode and increases to about
���

or larger (and
a smaller, or even negative wave angle) for traveling crossflow waves. Based on
both guesses, LASTRAC would attempt to find a spanwise wave number that gives
a maximum growth rate at a given location. Therefore, the last two options are ideal
when the parameter range for flow instability is sought. Default is beta unit =
non dim beta.

freq: Disturbance frequency or temporal wave number, depending on the input value of
freq unit. Users may specify either a single value or an array of values for
freq. Users may use the character “*” to represent successive appearances of
a value, e.g., freq = 1.e-4, 5* 0.002, 100. Number of freq values
must match that of the beta values. No default value.

beta: Spanwise wave number, wavelength, wave angle, or the value of �#"�$ , depending
on beta unit. Similar to freq, users may specify an array of values to be
computed in beta. Users may use the character “*” to represent successive ap-
pearances of a value, e.g. beta = 10*0.05, 0.05. The number of beta
values must match that of the freq values. No default value.

wave angle: An array of wave angles in degrees corresponding to the freq and beta pair.
The wave angle is the angle with respect to the free-stream mean flow direction.
Users only need to specify wave angles when beta unit = l over d beta.
A good guess for a stationary crossflow mode is around 87 degree. Traveling
crossflow modes can have a smaller or even negative wave angle when crossflow
reversal occurs. No default value is assumed.

qp approx: A boolean to determine whether to apply quasi-parallel LST approximation at
each marching station. This parameter only affects the local eigenvalue search
mode (solution type = local eig solution). For solution type
= marching pse solution, this parameter is ignored. Default is false.

The second group of input parameters is associated with the stability grid and other geometrical values.

grid type: Four types of wall-normal stability grid distribution may be selected (see fig.3).
The wall cluster option clusters the grid points near the wall according to
equation (43). The dual cluster option constructs the grid in two zones and
clusters the points both near the wall and the critical layer by using equation (44).
For hypersonic boundary layers, disturbances peak at the critical layer located near
the boundary-layer edge. The dual cluster option is necessary to properly re-
solve the disturbance eigenfunction. For low-speed flows, the wall cluster
option suffices. For jets or vortex flows, users may choose to cluster the grid only
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near the critical layer with the critl cluster option. This option uses a hy-
perbolic tangent mapping suggested in reference [29]. The shock grid option
has a two-zone clustering similar to dual cluster but it has a uniform grid
in the free-stream with an increment specified in the parameter fstrm incr. If
grid type = critl cluster, users may need to provide tau s to further
control the grid stretching. For grid type = shock grid, users may need to
provide additional input parameters such as base grid type,yshock bound,
fstrm incr, or use shockgrid global. Default is dual cluster.

tau s: Stretching parameter used when grid type = critl cluster (see eq. (5-
221) in ref. [29]). The larger the value is, the stronger the clustering will be.
Default is 20.

base grid type: Determines the base grid type for grid type = shock grid. Two choices
can be made, dual cluster or critl cluster, for a boundary layer or a
shear layer, respectively. Default is base grid type = dual cluster.

yshock bound: Defines the domain size for stability calculations when the parameter grid type
is shock grid. If the input value is zero, the local � ��� # value read in from the
mean flow file (which may vary along � ) will be used. Non-zero values specified
here will be regarded as � ��� # . Default is 0.

fstrm incr: Nondimensional constant free-stream increment used for the shock grid when the
parameter grid type is shock grid. Default value is 1.

use shockgrid global: Boolean to determine whether to use the shock grid for global eigenvalue search.
This parameter is used only when the parameter grid type is shock grid.
Default is false.

ymax: Maximum wall-normal coordinate for any stability calculations except the global
eigenvalue search. The input is a nondimensional value normalized by the local
boundary layer length scale � defined in equation (5) or the length scale specified
by the user in the mean flow file. Default is 200.

ymax glob search: Maximum wall-normal coordinate for the global eigenvalue search. For certain hy-
personic flows, reducing this value makes nonparallel eigenvalue spectrum cleaner
and thus easier to select unstable modes. Default is 60.

num normal pts: Number of wall-normal points for local (parallel or nonparallel) eigenvalue search
and linear or nonlinear PSE calculations. A value of 101 is sufficient for most
cases. For higher resolution of the eigenfunction, a larger value can be used. De-
fault is 81.

num normal pts geig: Number of wall-normal points for the global eigenvalue search. This value can be
different from num normal pts. Increasing this value increases the computa-
tional time. A value of 41 is sufficient for most cases. When the mean flow profile
is under-resolved, we may need to increase this value to 61 or 81. Default is 41.



CHAPTER 5. INPUT AND OUTPUT DESCRIPTION 41

strm curvt: Boolean to determine whether to include streamwise curvature in the stability cal-
culations. Default is false.

transv curvt: Boolean to determine whether to include transverse curvature for axisymmetric
geometries in the stability calculations. Default is false.

strm order: Determines the order of accuracy along the marching direction. Two choices are
available: first order or second order.

wall normal order: Determines the order of accuracy along the wall-normal direction. Two choices
are available: second order or fourth order.

The following parameters are associated with the input/output, boundary conditions and physical properties
of the calculation. For all stability calculations, the no-slip condition (eq. (38)) is used at the wall bound-
ary. In the far field, three boundary conditions (Dirichlet, equation (39), nonreflecting, equation (40), or
the Rankine-Hugoniot shock condition) may be chosen. The parameters fs mach, fs pr, fs temp,
shock angle, and init shock disp are used only if a shock boundary condition is chosen.

farfield bc: Three far-field boundary conditions are available; dirichlet, non reflect,
and rh shock. Default is farfield bc = non reflect.

fs mach: Free-stream Mach number used for farfield bc = rh shock. No default value.

fs pr: Free-stream pressure used for farfield bc = rh shock (in N/m
�
). No default

value.

fs temp: Free-stream temperature used for farfield bc = rh shock (in K). No default
value.

shock angle: Constant shock angle with respect to the surface for farfield bc = rh shock.
This parameter is used only if a constant shock angle exists, otherwise the read-in
mean flow boundary is used to compute the local shock angle. No default value.

init shock disp: Initial shock perturbation displacement (a complex number) at the starting location
of the PSE marching. Usually a zero value is appropriate. Default is (0, 0).

variable Prandtl: Boolean to determine whether to use variable Prandtl number in the stability calcu-
lations or not. The values of

, &
and 1 will be computed using a curve-fit function.

Default is false.

gamma: The specific heat ratio. Default is 1.4.

stokes: The Stokes parameter as defined in equation (3). Default is 0 (Stokes’ hypothesis).

mflow storage type: There are two ways to internally store the read-in mean flow in LASTRAC. The
memory storage option will read in all mean flow profiles and store them in
physical memory for future use. The file storage option scans through the
mean flow file and stores the file position index database for each mean flow station.
The mean flow profiles then are extracted on the fly when necessary. The latter option
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is useful when the mean flow file is large. To output the mean profiles read in for de-
bugging, the memory storage option must be used. Default is file storage.

use extrap mprof: Stability calculations typically employ a domain larger than that used in meanflow
calculations. Therefore, extrapolation is necessary in the free-stream. This parameter
controls whether to use linear extrapolation based on the data near the boundary of
the mean flow calculations. While extrapolation generally works well, it must be
used with caution when Navier-Stokes codes are used to generate the meanflow. The
Navier-Stokes meanflow typically has a non-vanishing derivative at the boundary.
When extrapolated to a large � value in the stability grid, the free stream values may
become unphysical. In this case, we need to turn off the extrapolation and freeze the
free-stream value at the domain boundary of the mean flow calculation. Default is
true.

output eigenfunction: Boolean to determine whether to write eigenfunction output for stability calcula-
tions or not. This parameter applies to both options of solution type. Default
is false.

print rhou eigf: Boolean to determine whether to print the mass flow rate instead of the pressure
eigenfunction in the eigenfunction output file. This parameter is applicable when
output eigenfunction = true. If false, the pressure eigenfunction will be
printed instead of the mass flow rate. This parameter applies to both linear and
nonlinear runs. Default is false.

pns approx: Determines whether the PNS approximation (eq. (26)) will be applied to the stream-
wise disturbance pressure gradient. For small marching step size, the PNS approxi-
mation is necessary to maintain numerical stability. Default is false.

pns sigma: The coefficient
� .

in the Vigneron’s PNS approximation, equation (27). To com-
pletely neglect the pressure shape-function gradient, this value is set to zero. Default
value is 1.

The following parameters are related to the eigenvalue calculation or initial conditions of the PSE marching.
For a local eigenvalue search, one of the wall conditions must be replaced with the normalized pressure to
facilitate the Newton’s iteration. Usually, wall temperature or streamwise velocity component is replaced
and used as the target of Newton’s iteration. Alternatively, an interior equation near the critical layer can be
used as a target. These options are provided through relax type.

global solver: Two global eigenvalue search methods are provided. The use cmpxlr
option employs a built-in eigenvalue routine using an LR algorithm. The
use lapack option calculates the global eigenvalue spectrum by calling
the CGEEV routine in the LAPACK. Default is use cmpxlr.

relax type: Determines how the wall boundary conditions are treated in a local eigen-
value search. Three choices are available: wall uvel, wall temp,
and critlayer. For low-speed flows, the option wall uvelworks well.
For hypersonic flow, wall temp is more robust. To track stable modes,
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critlayer generally works better. For jets or shear layers, there is no
wall and the critlayer option must be used. Default is relax type
= wall temp.

alpha init: This parameter is only used for linear PSE marching. If this parameter is
left unspecified, a global eigenvalue search will be performed until a good
unstable mode is found downstream of the initial location. Otherwise, the
value provided by alpha init will be used as an initial guess in the local
eigenvalue search. If the local eigenvalue search does not converge, the
global search will start automatically. The input value is of a complex type.
No default value.

read in eigf: For PSE calculations, the initial eigenfunction (or shape-functions in the
context of PSE) can be generated by a local nonparallel eigenvalue search
as discussed in the previous section, or users can provide it from external
sources through reading a file. This parameter determines whether to read
in eigenfunction from a file. If true, the file name must be provided by
eigf file name, and the number of profiles to be read should be given
by the parameter num eigf readin. Default is false.

num eigf readin: Determines how many eigenfunction profiles are to be read in the file given
by eigf file name.

eigf file name: File name of the eigenfunction file (specified between quotation marks, e.g.
"eigfunc.dat") to be used when read in eigf = true. This file
constains columns of data in the order of � , 
& , 
� , 
� , 
� , 
0 for perfect gas ( � is
real and the rest are complex numbers). In this case, num eigf readin
= 5. No default value.

update alpha: Boolean to determine whether to update streamwise wave number � during
the linear PSE marching. Default is true.

use l2alpha: Boolean to determine whether to use the local two-alpha approach for non-
parallel eigenvalue search by using equation (60). The two-alpha iteration
needs a guess for � � " ��� . LASTRAC will perform this two-alpha search for
� � " ��� � 
 � � ��� and � � " ��� � 
 � � � ��	���� � � ��	�� repeatedly at every loca-
tion where a local nonparallel search is requested for a 2-D or axisymmet-
ric boundary layer. If crossflow exists as in an infinite swept-wing bound-
ary layer, eight guesses of � � " ��� will be tried: 
 � � ��� , 
 � � � ������� � � � 	�� ,

 � � � � ����� � � ��	�� , 
 � � � ������� � � � 	�� , 
  � � � ����� � � ��	�� , 
 � � � ������� � � � 	�� ,

 � � � � � ��� � � ��	�� , 
 � � � � � ��� � � ��	�� . Numerical experiments indicate that
for 2-D or axisymmetric boundary layers, setting � � " ��� to zero in general
works well for almost all cases. For crossflow instability cases, the guesses
attempted by LASTRAC give satisfactory solutions except near the leading
edge where � varies rapidly. If LASTRAC fails to find a good unstable mode
near the leading edge, users have two options. First, users can turn off two-
alpha iteration and revert to the single-alpha iteration (use l2alpha =
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false). Alternatively, a better guess for � � " ��� can be specified in dadx
or a shift can be applied to the internal � � " ��� values using dadx shift.
These parameters (use l2alpha, dadx, and dadx shift) should be
disregarded in a quasi-parallel LST eigenvalue search. Default is true.

dadx: Provides a guess of � � " ��� to perform a local nonparallel two-alpha eigen-
value search. If dadx is specified in the input file and not equal to 
 � � ��� ,
then the internally stored guesses for � � " ��� are ignored and only this � � " ���
value will be used to search for nonparallel eigenvalues. Therefore, users
supply dadx only if the internal guesses fail to identify an expected unsta-
ble mode, or if only one value of � � " ��� is intended. The value provided
should be a complex number even though the real part is more important
than the imaginary part (setting imaginary part to

� � � ��	 usually suffices).
Default value is 
 � � ��� .

dadx shift: Shift to the internally stored guesses of � � " ��� as described for the parame-
ter use l2alpha. The value provided should be a complex number. De-
fault value is 
 � � ��� .

lod max: Determines the maximum value of allowable �#"�$ (where � is the total wave-
length of the disturbance and $ is the boundary layer thickness) for the local
eigenvalue search. Any converged mode during the eigenvalue search with a
�#"�$ exceeding this value will be regarded as a spurious mode. Normally, the
�#"�$ value for instability wave is less than

���
, except very near the leading

edge where the boundary layer thickness is small and a transient instability
mode may have a � "�$ value of around 30–40. Default is 40.

cr max: Determines the maximum allowable phase speed for the selection of eigen-
modes from the global eigenvalue spectrum. All eigenmodes from the global
eigenvalue spectrum with a phase speed higher than this value will be fil-
tered out. Default value is 0.99.

cr min: Determines the minimum allowable phase speed for the selection of eigen-
modes from the global eigenvalue spectrum. All eigenmodes from the global
eigenvalue spectrum with a phase speed lower than this value will be filtered
out. Default value is 1.e-4.

wave ang max: Determines the maximum allowable wave angle with respect to the local
free-stream mean flow direction for the selection of eigenmodes from both
the global eigenvalue spectrum and the local eigenvalue search. All eigen-
modes with a wave angle larger than this value will be filtered out. Default
value is 90.

wave ang min: Determines the minimum allowable wave angle with respect to the local
free-stream mean flow direction for the selection of eigenmodes from both
the global eigenvalue spectrum and the local eigenvalue search. All eigen-
modes with a wave angle less than this value will be filtered out. Default
value is -90.
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alpha i max: Determines the value of a maximum acceptable growth rate. The eigenvalue
search sometimes generates unphysical spurious modes, and this parameter
filters out modes that have very large growth rates, such as the upstream
propagating mode. This filter applies to both global and local eigenvalue
searches. Users may need to increase this value if the local length scale
provided in the mean flow file is such that the physical unstable mode may
have a growth rate larger than the default value. Default is

� � � .
np growth rate min: Determines the value of a minimum acceptable growth rate during the local

eigenvalue search. The input value is not used to filter modes from the global
spectrum. This parameter applies to both parallel and nonparallel eigenvalue
searches. A negative value defines the lower bound of a stable mode being
tracked. Therefore, to track a mode deeply into the stable region, users need
to decrease this value (make it more negative). Default is

�
� � � ��� .
wall dpdy ratio min: A spurious mode may occasionally be identified by using the pressure eigen-

function derivative near the wall. This parameter determines the lower bound
of the ratio (rate of change) in the wall pressure eigenfunction for an accept-
able eigenmode. Lowering this value allows more modes to be included. In
cases where the mean flow is poorly resolved, the near wall solution is often
noisy; using this parameter may help filter out spurious modes. However,
it may also filter out a good unstable mode. Therefore, users must use this
parameter with caution. Default value is

� � � � � .
delta for eig iteration: Determines

�
� used for computing derivatives of the target with respect to

� during the local eigenvalue search. Default value is
� � � � 	 .

local eig convg tolerance: Convergence criterion for local eigenvalue search. Default value is
� � � � � .

march eig convg tolerance: Convergence criterion for the PSE marching process. Default value is
� � � ��

.

max value eig correction: During the local eigenvalue search, if the correction of the eigenvalue in
each Newton’s iteration exceeds this specified value, the search process will
stop and a non-convergence is flagged. Default value is 1.

num max eig iteration: Determines the maximum number of iterations to be employed for Newton’s
iteration in the local eigenvalue search. Default is 30.

The following parameters are related to nonlinear PSE calculations and are ignored if nonl pse calc =
false. The Fourier series of the disturbance is defined in equation (10). The fundamental frequency and
spanwise wave number are determined by the first pair of freq and beta, and the corresponding values of
freq unit and beta unit as in the linear PSE calculations.

use mthread: Boolean to determine whether LASTRAC will be run in the multi-threaded
mode. For the MPI version of LASTRAC, multi-threaded execution may be
turned on or off for each process by using this parameter. Default is false.
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nthread: Determines total maximum number of concurrent threads to be spawned for
nonlinear PSE calculations. The optimum number depends on the system
configuration and is usually more than the number of central processing units
(CPU) available. Default value is 64.

n mode omega: Specifies the number of temporal modes used ( � in the Fourier series de-
fined in equation (10). Note that this number is not the total number of
Fourier modes used and can be any nonnegative integer. The fundamental
wave number is determined by the first element in the freq array and its
associated freq unit value. Default is 0.

n mode beta: Specifies the number of spanwise modes used (
�

in the Fourier series de-
fined in equation (10). Note that this number is not the total number of
Fourier modes used and can be any nonnegative integer. The fundamental
wave number is determined by the first element in the beta array and its
associated beta unit value. Default is 0.

mode symm: Determines the symmetry condition in the wave number space 
�� � � � . The
option OMEGA BETA SYMM, valid for 2-D and axisymmetric boundary lay-
ers where no crossflow is present in the mean flow, assumes symmetry condi-
tions along both the � and the � axes (thus, only one quadrant,

� � � � �
and

� � � � �
, is calculated). The other option BETA SYMM ONLY,

assumes a symmetry condition only along the � axis. Therefore, two quad-
rants in the wave number space (

� � � � � � and
� � � � �

) are
calculated. This latter option is used for crossflow instability. Default is
OMEGA BETA SYMM.

n init modes: Specifies the number of Fourier modes to be initiated in the nonlinear PSE
calculation. For each excited mode, users must provide a value for � ���
in nonl alpha init, an amplitude in nonl amp init, and a Fourier
mode number in nonl mode init. No default value.

nonl alpha init: This input array of complex numbers provides an initial guess of the value
of � ��� for all the excited modes. LASTRAC takes the input value and per-
forms a local eigenvalue search to find a converged eigenmode and then uses
that mode eigenfunction and eigenvalue to initiate the corresponding Fourier
mode. Users must provide at least one good eigenmode initially. For the rest
of the excited Fourier modes, a 
 � � ��� value may be specified in this array if a
converged eigenmode is not expected or difficult to find. The code will then
scale the initial value of � ��� based on the one good eigenmode provided.
To avoid transient effect, users should always provide a good guess from a
linear calculation. No default value.

nonl dadx init: This complex array provides initial guesses of the value of � � " ��� for the de-
fault nonparallel two-alpha local eigenvalue search that will be needed to ini-
tialize the eigenmode. If the single-alpha approach is chosen (use l2alpha
= false), users don’t need to input this array. Default is 0 for all elements.
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nonl amp init: This complex array provides initial amplitudes of all excited modes. The
use of a complex value here enables a phase shift among the excited modes.
These amplitudes are multiplied by the eigenfunctions to determine the abso-
lute amplitude of the disturbance. For user-supplied eigenfunctions, the total
disturbance amplitude thus is determined by the product of this value and
the eigenfunction. The eigenfunction generated internally is normalized by
the peak streamwise velocity disturbance for a mean flow Mach number less
than

�
, and by the peak temperature disturbance otherwise. Therefore, the

maximum streamwise velocity or temperature disturbance amplitude is the
value specified in this parameter, depending on the flow Mach number. The
amplitude value read in here is further scaled by the nonl amp vscale
defined below. No default value.

nonl amp vscale: The dimensional velocity scale (m/s) used to scale the initial amplitude of
the excited mode. If left unspecified, a value of 1 is used internally for 2-
D/axisymmetric boundary layers, and the total free-stream velocity at the
initial station is used for infinite swept wing boundary layers.

nonl mode init: This complex integer array provides the mode number of each excited mode.
For example, in a subharmonic breakdown simulation with only two modes,
users may specify nonl mode init = (2, 0), (1, 1). No default
value.

nonl eigfn file: If the initial eigenfunction of the excited Fourier modes is not of the eigen-
mode type (e.g., obtained from other codes), users may specify the eigen-
modes in a separate file by using this parameter. The input file name must be
inside the quotes (e.g., nonl eigfn file = ‘‘nonl eigf.dat’’).
This ASCII file has the following format:

npts1 m1 n1
y p_r p_i u_r u_i v_r v_i w_r w_i T_r T_i
...
...total of npts1 lines
...
npts2 m2 n2
y p_r p_i u_r u_i v_r v_i w_r w_i T_r T_i
...
...total of npts2 lines
...
npts3 m3 n3
y p_r p_i u_r u_i v_r v_i w_r w_i T_r T_i
...
...total of npts3 lines
...

where nptsi, mi, and ni represent the number of points, and the mode
number for the ith mode inputted. For each mode, there should be nptsi
lines of wall-normal coordinate (y) and complex eigenfunction values. In
addition to this file, users should still specify amplitudes and values of � ��� .
No default value.
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max nonl iteration: Determines the maximum number of iterations for nonlinear iteration. De-
fault is 30.

nonl alpha scaling mode t: Mode number of the Fourier mode in the spectrum used to scale the value
of � ��� for all non-stationary modes (i.e.. a mode 
�� � � � such that � ���
) used in the calculations. This parameter is necessary because for non-

excited modes with a zero initial eigenfunction, strong transient effects may
prevent the wave number � ��� from being determined by the normalization
procedure given in equation (28). Scaling these modes by using the � value
of a more dominant mode does not incur any inaccuracy provided that the
amplitude of the modes being scaled is small. For instance, a value of (2,
0) can be used in a subharmonic breakdown simulation. Default value is

 ��� ��� .

nonl alpha scaling mode s: Mode number of the Fourier mode in the spectrum used to scale the value
of � ��� for all stationary modes (i.e. a mode 
 � � � � ) used in the calculations.
This parameter is necessary because for non-excited modes with a zero ini-
tial eigenfunction, strong transient effect may prevent the wave number � ���
from being determined by the normalization procedure given in equation
(28). Scaling these modes using the � value of a more dominant mode does
not incur any inaccuracy provided that the amplitude of the modes being
scaled is small. For instance, nonl alpha scaling mode s = (0,
1) can be used in a stationary crossflow instability simulation. Default value
is 
 � ���
� .

no nonl alpha scaling: Boolean, when set true, forces the nonlinear calculation to bypass the scal-
ing of � ��� according the primary modes and update � ��� for all Fourier
modes according to equation (28). This option is not to be used initially due
to the strong transient effects for non-initialized modes. However, after all
Fourier modes settle down in the modal structure, updating � � � for every
Fourier mode sometimes provides more accurate solutions when the distur-
bance amplitudes for all participating modes are reasonably large. Default is
false.

nonl inc mfd jac: Boolean to determine whether to include the mean flow distortion mode

 � � ��� on the left-hand side operator of the governing equations (eq. (34)).
At moderately to highly nonlinear stages, putting the 
 � � ��� mode on the
left-hand side may increase the diagonal dominance of the linear operator
and thus enhance numerical stability for nonlinear iterations. For most cal-
culations, selecting nonl inc mfd jac = true is helpful. Default is
false.

nonl relax coef: Under-relaxation factor for nonlinear iterations. Lowering this factor may
help numerically stabilize nonlinear iterations when the disturbance field
reaches the moderately to highly nonlinear stage. Default is 1.

nonl convg tolerance: Determines the tolerance of the L2 norm of the changes of shape-functions
during nonlinear iterations. Lowering this value increases the number of



CHAPTER 5. INPUT AND OUTPUT DESCRIPTION 49

nonlinear iterations required at each marching station; thus, it’s more costly.
Because the L2 norm is evaluated by using normalized quantities, a tolerance
of around

� � � � � or
� � � � � is sufficient. Default is

� � � �� .
nonl dealiasing: The nonlinear forcing on the right-hand side equation (34) is evaluated in the

physical space and then transformed back to the wave number space. De-
aliasing can be performed during this process. In LASTRAC, we pad one
half of modes with zero eigenfunctions in both temporal and spanwise di-
rections before transforming to the physical space. Only the modes kept in
the Fourier spectrum are used after transforming back to the wave number
space. When only a small number of modes are kept in the nonlinear cal-
culations, this padding process keeps the spectrum from being contaminated
due to the aliasing error that arises when the tail of the spectrum becomes
energetic. The parameter nonl dealiasing is a boolean to determine
whether de-aliasing will be performed. Default is false.

nonl restart: Boolean to determine whether a run is a restart for nonlinear PSE calcula-
tions. When LASTRAC runs, a restart file is repeatedly written to a binary
file (called Nonl restart.dat, if the -t option is not used in the com-
mand line) for every marching station. When nonl restart is turned on,
the code will read in the restart file and continue nonlinear iteration at the
location where last run was stopped. Default is false.

nonl restart fn: A string contains the name of the nonlinear restart file to be read in when the
parameter nonl restart = true. The file path can be either absolute
or relative to the LASTRAC executable. If the -t command line option is
not used, the default restart file name is ‘‘Nonl restart.dat’’. In this
case, users don’t need to specify the file name in this parameter. Default is
‘‘Nonl restart.dat’’.

5.2. Command-line Options

To execute LASTRAC, the following command is issued:

lastrac [-hvdt] input file

Several command line options are available for LASTRAC. The -v option prints the LASTRAC version
number and the build date and then exits. The -d option is for debugging. With this option, LASTRAC will
print the mean flow information to the standard output. Detailed history of the eigenvalue iterations is also
printed. In addition, the mean flow profiles as interpolated to the stability grid will be printed in the file
mprofile interpd.dat. If the input parameter mflow storage type = memory storage,
then the -d option also prints all the mean flow profiles read in from the unformatted binary file in a file
called mprofile readin.dat. Both mean flow profile files are written in Tecplot format and may be
plotted for visual inspection. If a global eigenvalue search is involved in the calculations, the -d option also
prints the global eigenvalue spectrum in a file called Global eig spectrum.dat. The -h option prints help
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information on the standard output. The -t option is used to specify a file name “tag” for all output files.
We will discussed this option in the next section.

5.3. Output File Formats

Most of output files of LASTRAC are written in Tecplot format. By default, all output files are overwritten
when a new LASTRAC run is executed. Users must back up all output files before a new run is issued.
Meanwhile, users may specify a file name tag by using the -t command line option. The output files then
will be tagged according to the file tag provided in the command line. Users can use different tags for
different runs to avoid the output files being overwritten. For example, a run with this command

lastrac -t .run1234 m0.in

would run LASTRAC using an input script file m0.in and a file tag .run1234. For a linear run, the output
files are then nfact.dat.run1234, npgrowth.dat.run1234, etc.; for a nonlinear run, this com-
mand generates files such as Nonl u amp.dat.run1234’’ and Nonl wallshear.dat.run1234.

The tag name following the -t option may start with a period as in the previous example and this tag name
is appended to the default file names. If the tag name does not start with a period, the tag name is inserted
before the file extension. For example, the command

lastrac -t run1234 m0.in

generates output files such as nfact run1234.dat and Nonl u amp run1234.dat.

We describe the content of each output file as follows. File names given here are the default file names
without a user specified tag.

nfact.dat: The major output for any linear runs. It summarizes the N-factor, growth rate,
and other important information such as the physical quantities used to normal-
ize the quantities listed in the output. Each row of data contains output values
of x, Re, N, ‘a r, ‘s, ‘s T, lscl, u e, T e, C r, f, ‘l, ‘q, ‘y, ‘b, ‘l/d, and ist at each
mean flow station being computed. Definitions of these output values are as
follows.

x: Dimensional � coordinate in meters for 2D or axisymmetric cases. For
infinite swept-wing boundary layers with crossflow, this is the nondimen-
sional � "�� value as read in from the mean flow file.

Re: Local Reynolds number as defined in equation (6).

N: N-factor computed by integrating the growth rate starting from the onset
of instability wave (i.e., the first output station in this file).

‘a r: Tecplot symbol ‘a represents the Greek letter alpha. This quantity is the
real part of � at each location. For nonparallel calculations (including lo-
cal eigenvalue or PSE), this is the � value before any nonparallel correc-
tion. It is non-dimensionalized by the length scale output in the column
lscl.
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‘s: Tecplot symbol ‘s represents the Greek letter sigma. This quantity is
the nondimensional physical growth rate of the disturbance. For parallel
computations, this is the negative of the imaginary part of the eigenvalue
� . For nonparallel cases, this is the effective growth rate (eq. (31)) based
on the total kinetic energy (eq. (29)). It is normalized by the length scale
output in the column lscl.

‘s T: Physical growth rate based on the peak temperature disturbance for non-
parallel (either local or PSE marching) computations using equation (31).
This output is ignored for parallel calculations.

lscl: Dimensional local length scale in meters used to normalize � and growth
rate, and to compute Reynolds number.

u e: Dimensional boundary layer edge streamwise velocity in m/sec.

T e: Dimensional boundary layer edge temperature in K.

C r: Local phase speed � "�� � . It is non-dimensionalized by the velocity scale
printed out in the beginning of nfact.dat. For nonparallel computa-
tions, this phase speed is based on the value of � before any nonparallel
correction (the value of ‘a r).

f: Disturbance frequency in Hz.

‘l: Represents the Greek letter lambda ( � ) in Tecplot and is the disturbance
spanwise wavelength in mm.

‘q: Represents the Greek letter theta ( � )in Tecplot and is the angle (in de-
grees) between the free-stream mean flow direction and the � axis.

‘y: Represents the Greek letter Psi ( � ) in Tecplot and is the wave angle (in
degrees) with respect to the free-stream mean flow direction.

‘b: Represents the Greek letter beta ( � ) in Tecplot and is the nondimen-
sional spanwise wave number. It uses the same normalization as ‘a r.
If beta unit = nwave axisym beta or the transverse curvature
is accounted for and beta unit = wave angle beta, the integer
azimuthal wave number (

� � � 
 
 � , where

��

is the local cone radius) is
written here. For the latter case,

�
is the optimized wave number which

gives rise to a maximum growth rate.

‘l/d: Ratio of the total disturbance wavelength to the boundary-layer thickness.
The total disturbance wavelength includes contributions from both � and
� .

ist: Local station number in the calculation.

npgrowth.dat: Contains the output of nonparallel growth rates at each mean flow station being
computed. Each row of data contains values of x, Re, ‘s ‘r u, ‘s ‘r, ‘s u, ‘s v,
‘s T, ‘s E, ‘s w. The symbol ‘r represents the Greek letter rho (

�
) in Tecplot.

Nonparallel effective growth rates based on equation (31) are computed for
peak

� � , � , � , 0 , � , and
�

disturbances. At each location, the local length
scale written in nfact.dat is used to normalize the growth rate.
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npnfact.dat: Contains the output of nonparallel N factors at each mean flow location being
computed. Each row of data contains values of x, Re, ‘N ‘r u, ‘N ‘r, ‘N u,
‘N v, ‘N T, ‘N E, ‘N w. These N factors are computed based on the nonpar-
allel growth rates (e.g., ‘s ‘r u, ‘s ‘r, etc.) written in npgrowth.dat. The
integration begins at the first station in this file.

eigenfunc.dat: This output is written only if the input parameter output eigenfunction
= true. The eigenfunction or shape-function computed at each mean flow
location is written as a zone in Tecplot. Each zone contains the output of the
wall-normal � -coordinate normalized by the corresponding local length scale
written in the output nfact.dat, and the complex eigenfunction values of 
& ,

� , 
� , 
� , and 
0 . If the input parameter print rhou eigf is set to true, the
mass flow rate �� � � � 
� � 
� �
will be printed instead of 
& in the output file even though the Tecplot variable
name still shows pressure.

Global eig spectrum.dat: This output is written only if the -d option is issued in the command line and a
global eigenvalue search is performed in the calculation. The file contains real
and imaginary parts of the eigenvalue � computed.

For nonlinear PSE runs, results of the complete Fourier spectrum are written in a C binary file. A separate
post-processing code is currently being developed to extract perturbed flow field details. In addition, dis-
turbance amplitudes, phase information, and phase speed are computed and printed for each Fourier mode
at a wall-normal location where the corresponding disturbance is maximum. These peak values represent
disturbance energy distribution for various Fourier modes. Depending on the symmetry conditions in the
Fourier wave number space, only part of the Fourier modes are written in these files. For 2-D or axisym-
metric boundary layers, only the first quadrant (

� � � � � and
� � � � �

in equation (10) is written.
For crossflow instability in an infinite swept wing boundary layer, both the first and second quadrants are
written (

� � � � � � and
� � � � �

). All dimensional quantities in these files are normalized with
the scales printed out in the file nfact.dat. Unlike the linear runs, nfact.dat contains only the scales
and no further information.

Nonl u amp.dat: Contains � (or � "�� for infinite swept wing boundary layers), % , and the stream-
wise velocity � � amplitude at each mean flow location computed.

Nonl rhou amp.dat: Contains � (or � "�� for infinite swept wing boundary layers), % , and the stream-
wise mass flow rate ( 
 � � � � ���� � � � � � �� ) amplitude at each mean flow location
computed.

Nonl T amp.dat: Contains � (or � "�� for infinite swept wing boundary layers), % , and the stream-
wise velocity

0 � amplitude at each mean flow location computed.

Nonl u phase.dat: Contains � (or � "�� for infinite swept wing boundary layers), % , and the stream-
wise velocity phase information (real part of the effective � ��� calculated by
applying equation (31) for the wave number � ��� ) at each mean flow location
computed.
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Nonl rhou phase.dat: Contains � (or � "�� for infinite swept wing boundary layers), % , and the stream-
wise mass flow rate phase information (real part of the effective � � � calculated
by applying equation (31) for the wave number � ��� ) at each mean flow location
computed.

Nonl T phase.dat: Contains � (or � "�� for infinite swept wing boundary layers), % , and the temper-
ature phase information (real part of the effective � ��� calculated by applying
equation (31) for the wave number � ��� ) at each mean flow location computed.

Nonl u cr.dat: Contains � (or � "�� for infinite swept wing boundary layers), % , and the stream-
wise velocity phase speed at each mean flow location computed.

Nonl rhou cr.dat: Contains � (or � "�� for infinite swept wing boundary layers), % , and the stream-
wise mass flow rate phase speed at each mean flow location computed.

Nonl T cr.dat: Contains � (or � "�� for infinite swept wing boundary layers), % , and the tempera-
ture phase speed at each mean flow location computed.

Nonl KE.dat: Total disturbance kinetic energy as defined in equation (29) is written for every
Fourier mode at each mean flow location computed.

Nonl KE gr.dat: Contains the computed nonlinear disturbance growth rates based on the distur-
bance total kinetic energy (eq. (29)) for every Fourier mode at each mean flow
location computed.

Nonl eigenfunc.dat: If the input parameter output eigenfunction = true, shape-functions
of each Fourier mode at all locations are written to this file. Each Fourier mode
is written as a zone in Tecplot. The absolute amplitude for

& � � �
� �
� � and
0

is
written as a real number. If print rhou eigf is set to true,

&
is replaced by

the mass flow rate disturbance defined as


 � � � � � � � � � � � � � � � � �
Please note that the wall-normal coordinate � in this file is normalized with a
fixed length scale (printed out in nfact.dat).

Nonl wallshear.dat: A good quantity to measure transition is the wall shear stress. LASTRAC com-
putes the average streamwise wall shear (

� � " � � ) which includes contributions
from the mean flow as well as the mean flow distortion mode. The file con-
tains � (or � "�� for infinite swept wing boundary layers), % , laminar wall shear,
perturbed wall shear, laminar friction coefficient, and the perturbed friction coef-
ficient. Note that when the mean flow distortion mode is included on the left-hand
side operator (input parameter nonl inc mfd jac = true), the mean lami-
nar values actually already include part of the mean flow distortion.

Nonl restart.dat: Binary restart file written during the execution of LASTRAC. It is used to restart
the nonlinear run at the previous leftover location.
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Nonl flowfld.dat: Includes all Fourier modes computed at all mean flow locations. The post-processing
code to read and write specific outputs such as time probing or plot3d files for a
snapshot is being developed.



Chapter 6

Case Study I: Linear Calculations

Instead of showing the usage of each input parameter discussed in the previous chapter by a series of un-
related examples, we demonstrate procedures of running LASTRAC to perform stability calculations and
transition correlations through case studies that cover all speed regimes. We concentrate on linear LST or
PSE calculations in this chapter, nonlinear PSE calculations will be discussed in the next chapter.

Several steps are necessary to perform LASTRAC calculations for a given configuration The first step is to
prepare the mean flow file according to the previously described format. One common mistake in preparing
the mean flow is to run the mean flow code on a platform different from the one on which LASTRAC is run-
ning. Binary files have different byte orders on different machines; as a result, they are not interchangeable.
For example, a SUN or SGI machine shares the same binary format, but neither machine can share binary
files with Linux Intel machines. When a binary file mismatch happens, LASTRAC will flag error messages
like:

Error reading title from the mean flow file : ./mflow.m0fp
Error reading number of stations from the mean flow file : ./mflow.m0fp
Error reading gas model, code_unit, etc. from the mean flow file : ./mflow.m0fp
lastrac: MF2d_Reader.cpp:970: Assertion ‘num_stations > 0’ failed.

and quit.

The other common mistake is that the mean flow code was run with single precision while LASTRAC
expects a double precision binary mean flow file. As a result, a core dump may happen. Moreover, on some
machine platforms, compiling the mean flow code using -r8 would make an integer 8 bytes by default;
thus, a -i4 flag must be used simultaneously.

Running LASTRAC using the -d option will print out the parameter values being read from the binary
mean flow file. Users may use this option to make sure that the mean flow file was prepared in a correct
manner. In addition, the -d option together with mflow storage type = memory storage in the
input script file would generate a file called mprofile readin.datwhich contains all mean profiles in
the FORTRAN binary mean flow file for debugging.

In the following sections, we present several test cases that cover a broad range of flow speeds. In every
case, we guide the users through necessary steps to identify the unstable disturbance frequency and spanwise

55
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wave number range. After the unstable range is identified, a transition correlation by using LST or linear
PSE may be performed using the N-factor method. Alternatively, a finite amplitude may be given to the
dominate unstable mode to perform nonlinear PSE calculations. Transition locations may be computed
directly from these nonlinear simulations. Nonlinear calculations will be discussed in the next chapter.

6.1. Flat Plate Boundary Layers

The first test case is the Blasius boundary layer. The first attempt of the input script file may look like this:

//
// mach 0 flat plate
//

//mflow_storage_type = MEMORY_STORAGE
grid_type = wall_cluster
mflow_filename = "../../bl2d/mflow_lastrac"
marching_method_2d = along_station
init_station = 30
final_station = 45

solution_type = local_eig_solution

freq_unit = capf_freq

freq = 0.5e-4,
beta = 0.

qp_approx = true

Most of the parameter values here except that of mflow filename are irrelevant because we just want
to identify the parameter range and make sure that the binary mean flow file is in a correct format. The
wall cluster grid specified here is suitable for incompressible and low supersonic flows. The distur-
bance frequency is

� � � � 	 ��� � ��	 . A quasi-parallel LST eigenvalue calculation is intended in the above
input. Also note that several lines are commented out in the input file. When LASTRAC has successfully
read in the mean flow file, a banner like the following appears on the stdout:

** ** /* Mean Flow Parameters Reading in *\ ** **

Title : MACH 0 FLAT PLATE
GasModel : Perfect gas model
Reference Mach Number : 0.00999951
Prandtl Number : 0.7
No. of Stations : 200
X Coordinate Range(m) : 0.038 - 7.620
Re Range : 155.434 - 2198.164
B.L. Length Scale(m) : 2.4512059E-04 - 3.4665286E-03
U_inf Velocity (m/s) : 3.535 - 3.535
T_inf Temperature (K) : 311.105 - 311.105
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** ** \* .............................. */ ** **

%%%%%%%% disturbance reference frequency (c_r = 0.5) in Hz %%%%%%%%%%%%%
ranging from 81.9492 to 47.4315 for l/d = 2

or from 13.6582 to 7.90526 for l/d = 12

This banner summarizes the mean flow information for inspection. It also suggests a range of the disturbance
frequency in Hz. This frequency estimation is based on a phase speed of

� � 	 and a � "�$ value of 2 and 12.
These two values cover the usual range of instability waves. In this case, LASTRAC suggests a frequency
range of 8–80 Hz. This frequency range is quite low because the mean flow has a very thick boundary layer.
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Figure 5: N-factor versus Reynolds number for Blasius boundary layer.

The next step is to confirm the unstable frequency range. Using the suggested frequency band, we may
modify the input to:

grid_type = wall_cluster

mflow_filename = "../bl2d/mflow_lastrac"

marching_method_2d = along_station
init_station = 2
final_station = 199

solution_type = local_eig_solution

freq_unit = in_hertz_freq

freq = 8, 18, 28, 38, 48, 58, 68, 78, 88
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beta = 9*0.

qp_approx = true

Here, we intend to perform a quasi-parallel LST eigenvalue search for 2-D ( � ��� ) Tollmien-Schlichting
(TS) waves (they are more unstable than the oblique (3-D) waves for Blasius boundary layers) at several
frequencies ranging from 8 to 88 Hz. Out of the total 200 stations, we scan from station 2 to 199. The
resulting N-factor versus Reynolds number plot is shown in figure 5. The 8 Hz mode gives an N-factor of
about 11. Based on these results, we can further refine the N factor calculation by including more frequencies
around 8 Hz in the calculation. Alternatively, we can perform linear PSE calculations by using

grid_type = wall_cluster

mflow_filename = "../../bl2d/mflow_lastrac"

marching_method_2d = along_station
init_station = 10
final_station = 199

solution_type = marching_pse_solution
dadx = (0, 1.e-10)

freq_unit = in_hertz_freq

freq = 4, 8, 12, 16, 20
beta = 5*0.

qp_approx = false

where we have changed the init station to 10 based on the results shown in figure 5 to save computa-
tional time. In addition, the � � " ��� (dadx) value is set to 
 � ��� � � � � ��� because by default the nonparallel
eigenvalue search will be done for at least two (dadx) values. Setting dadx = (0, 1.e-10) is equiv-
alent to � � " ��� � �

, but it bypasses the other internal guess of dadx and saves computational time. The
resulting linear PSE results resemble that shown in figure 5 with the most amplified mode around 8Hz.

The second case is a Mach 2 flat plate boundary layer. Using a simple input file (similar to the Blasius case),
we have the following banner output:

** ** /* Mean Flow Parameters Reading in *\ ** **

Title : Compressible similar profiles
GasModel : Perfect gas model
Reference Mach Number : 1.99986
Prandtl Number : 0.7
No. of Stations : 401
X Coordinate Range(m) : 0.000 - 1.951
Re Range : 0.100 - 8000.000
B.L. Length Scale(m) : 3.0483704E-09 - 2.4386963E-04
U_inf Velocity (m/s) : 590.065 - 590.065
T_inf Temperature (K) : 216.667 - 216.667
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** ** \* .............................. */ ** **

%%%%%%%% disturbance reference frequency (c_r = 0.5) in Hz %%%%%%%%%%%%%
ranging from 153150 to 88310.4 for l/d = 2

or from 25524.9 to 14718.4 for l/d = 12

At this Mach number, the most amplified first mode wave is oblique; thus, we need to search for the range
of spanwise wavelength that would give rise to unstable first mode disturbances. The following input script
computes the maximized N-factor (with respect to the spanwise wave number) for various disturbance fre-
quencies:

//
// Mach 2 flat plate
//

num_normal_pts =101

mflow_filename = "../../meanflow/mflow.m2fp.linux"

marching_method_2d = along_re
init_re = 500, final_re = 7900, step_re = 100,

solution_type = local_eig_solution

lod_max = 25

freq_unit = in_hertz_freq
beta_unit = wave_angle_beta

freq = 2e3, 4e3, 6e3, 8e3, 10e3, 12e3, 15e3, 20e3, 25e3, 30e3, 35e3, 40e3, 45e3,
beta = 13*60,

qp_approx = true

The option beta unit = wave angle beta is used to optimize the growth rate with respect to the
spanwise wave number at each station using a guess of wave angles of

 �� �
(beta = 60). This value is

typical for the most unstable oblique first-mode waves. We also increase the grid resolution by using 101
points in the wall-normal direction. Instead of going along the stations, we choose to march with a constant
Reynolds number increment of

� �&�
. This increment is quite large because we are interested only in the

unstable spanwise wave number range, not in accurate solutions. Notice the use of the lod max = 25
other than the default value of 40. Without this filter, an upstream mode would appear initially for

��� �&	
kHz. For 2-D boundary layers, a value of

�&	
is reasonable. The resulting N-factor distribution is shown in

figure 6 and the corresponding spanwise wavelength distribution is shown in figure 7. Transition correlation
may be based on these maximized N-factors. However, N-factor correlation based on individual modes
rather than maximized modes represents the physics better; therefore, it gives better transition correlation
with respect to experimental data.

The resulting unstable frequency range appears to be closer to the lower values (i.e., from l/d = 12)
suggested by the LASTRAC banner output (frequencies suggested are around

� �&�
kHz for l/d = 2). This
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is because a value of � "�$ around 10-12 is typical for oblique first mode waves, Users should always verify
the unstable frequency range by quasi-parallel LST calculations to avoid missing important unstable waves.
After identifying the unstable parameter range, we may now run linear PSE N-factor correlations in that
range.

num_normal_pts =101

mflow_filename = "../../meanflow/mflow.m2fp.linux"

marching_method_2d = along_re
init_re = 600, final_re = 7900, step_re = 100,

dadx = (0, 1.e-10)

solution_type = marching_pse_solution

freq_unit = in_hertz_freq
beta_unit = in_mm_beta
lod_max = 25

freq = 4*8e3, 4*10e3, 4*12e3, 4*15e3, 4*20e3,
beta = 4, 8, 12, 16, 4, 8, 12, 16, 4, 8, 12, 16,

4, 8, 12, 16, 4, 8, 12, 16,

qp_approx = false

We have narrowed the parameter range to a frequency around
� � ���

kHz and a spanwise wavelength around� � �� 
mm according to the results shown in figures 6 and 7. The nonparallel N-factors computed are plotted

in figure 8. The envelope formed by these unstable modes may be used for transition correlation.

In summary, the previous example illustrates how to use LASTRAC for a new problem. First, the frequency
range is suggested in the stdout. Users then perform quasi-parallel LST calculations to identify the spanwise
wavelength range that gives the most unstable first mode disturbances, and to validate the frequency range
suggested by LASTRAC. The maximized N-factor distribution may be used directly for transition corre-
lations. Alternatively, users may track individual unstable modes by using additional LST or linear PSE
calculations. The N-factor envelope formed by these calculations provides additional results for transition
correlations or predictions.

One of the outstanding issues in stability calculations is the presence of the “upstream modes”. These modes
are a discrete eigenmode that travels along the upstream direction with a very large growth rate. Because of
its traveling direction, this eigenmode, in fact, decays very rapidly in the downstream direction. As a result,
it does not have any physical significance. Nevertheless, upstream modes are present in many eigenvalue
calculations. They are usually filtered out in the global spectrum by the preset filters. To demonstrate the
upstream mode, we can open up the filter range to allow more modes in the following example:

num_normal_pts = 101

mflow_filename = "../../meanflow/mflow.m2fp.linux"

marching_method_2d = along_re
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kHz, showing the presence of upstream modes.
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init_re = 500, final_re = 7900, step_re = 100,

solution_type = local_eig_solution

freq_unit = in_hertz_freq
beta_unit = wave_angle_beta

freq = 20e3 beta = 60,

lod_max = 100
wave_ang_min = -180. wave_ang_max = 180.

qp_approx = true

The lod max is increased to
� �&�

and the wave angle filter allows all wave angles to be included. The
resulting N-factor is shown in figure 9. A sudden jump near % ��	&	��&� is evident; beyond that, the N-factor
reaches

� �&�
rapidly. The corresponding �#"�$ and wave angles are shown in figure 10. It appears that after

the sudden jump, the wavelength falls in the normal range but the wave angle is
� ����� �

with respect to the
mean flow direction. This peculiar wave angle indicates that this mode is indeed traveling upstream. Figure
11 compares the streamwise velocity eigenfunction of this upstream mode with that of a regular unstable
mode. The upstream mode structure is extremely close to the wall in contrast to the regular mode for which
the velocity perturbation peaks near the critical layer.
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Figure 12: Nonparallel growth rates versus Reynolds number for spanwise wavelength of 10 and 6 mm and����	
kHz.

During linear PSE calculations, initializing the nonparallel eigenmodes is another important issues. The
following shows an example for the same Mach 2 mean flow:
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num_normal_pts =101

mflow_filename = "../../meanflow/mflow.m2fp.linux"

marching_method_2d = along_re
init_re = 1200, final_re = 7900, step_re = 100,

solution_type = marching_pse_solution

grid_type = wall_cluster

freq_unit = in_hertz_freq
beta_unit = in_mm_beta

cr_min = 0.2, cr_max = 0.6
np_growth_rate_min = -.01

dadx = (0., 1.e-10)
freq = 4*5e3,
beta = 18, 14, 10, 6,

qp_approx = false

Similar to the Blasius case, we use dadx = (0, 1.e-10) to save time. In addition, the window for
the unstable mode is restricted to a phase speed between

� � � and
� �  . From linear stability results shown

previously, the phase speed is around
� � � ; thus, this window will not filter out relevant modes but will pre-

vent irrelevant spurious modes from being captured. The parameter np growth rate min is lowered to� � � ��� to allow neutrally stable modes in the nonparallel eigenvalue selection process. For PSE calculations,
lowering this value allows the code to lock on a nonparallel mode faster and thus save computational time.
The starting Reynolds number is increased to 1200 based on the linear stability results. Using this input, we
find that the results were good for � � � ������� � ; however, two modes with � � � � � �� gave growth rates as
shown in figure 12. These modes exhibit oscillatory growth rates and eventually settle with a neutrally stable
growth rate. The reason these neutral modes were selected by LASTRAC is that we have a lower thresh-
old for the growth rate in the input. Furthermore, the nonparallel eigenvalue approach has more degree of
freedom than its parallel counterpart. Consequently, the eigenvalue procedure may generate modes that are
transiently unstable but would degenerate to a neutral mode downstream. From a receptivity standpoint, this
kind of mode does exist in the boundary layer but is not relevant. To avoid locking onto these modes, we
may restart the calculation later downstream where the unstable eigenmodes stand out and may be easily
selected. For this example, if we use init Re = 2000, the results are given in figure 13. In doing linear
PSE calculations, users must be aware of situations similar to this example.

6.2. Axisymmetric Cone Boundary Layers

In this example, we are interested in computing stability characteristics for a Mach 6 flared cone inves-
tigated experimentally by Horvath et al. (ref. [9]). The mean flow was computed by using the compress-
ible Navier-Stokes code CFL3D (http://fmad-www.larc.nasa.gov/˜rumsey/CFL3D/cfl3d.html). Several wind
tunnel conditions were studied. The example shown here is associated with the quiet tunnel condition with a
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unit Reynolds number of
� � ��� � � ��� /ft. The front part of the cone (

� � � �!� � in) is a
	 �

half-angle straight
cone followed by a circular arc flare section for

� � � � � ��� in. The header output for this case is:

** ** /* Mean Flow Parameters Reading in *\ ** **

Title : Re=2.89Million
GasModel : Perfect gas model
Reference Mach Number : 5.73009
Prandtl Number : 0.72
No. of Stations : 128
X Coordinate Range(m) : 0.004 - 0.512
Re Range : 200.073 - 2713.197
B.L. Length Scale(m) : 1.9912235E-05 - 1.8858289E-04
U_inf Velocity (m/s) : 881.857 - 862.361
T_inf Temperature (K) : 58.947 - 76.948

** ** \* .............................. */ ** **

%%%%%%%% disturbance reference frequency (c_r = 0.5) in Hz %%%%%%%%%%%%%
ranging from 167695 to 158897 for l/d = 2

or from 27949.2 to 26482.8 for l/d = 12

The reference Mach number
	 � � � is the value behind the shock near the leading edge, not the free-stream

value of
 
. At this Mach number, the most amplified disturbance is the two-dimensional second mode,

which has a wavelength to boundary layer thickness ( � "�$ ) ratio around 2. Therefore, the frequency range of
interest should be in the order of hundreds of kilohertz. The LASTRAC output suggests a frequency around�� ��

kHz. We perform linear stability calculation for a broader range:

//
// Mach 6 flare cone
//

mflow_filename = "../../meanflow/mflow.m6fc_qt"

num_normal_pts 101

strm_curvt = true
transv_curvt = true
use_extrap_mprof = false

marching_method_2d = along_station
init_station = 2
final_station = 127

solution_type = local_eig_solution

freq_unit = in_hertz_freq

freq = 300e3, 290e3, 280e3, 260e3, 240e3, 220e3, 200e3, 180e3,
160e3, 140e3, 120e3, 100e3, 80e3, 60e3, 40e3, 20e3
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Figure 13: Nonparallel growth rates versus Reynolds number for spanwise wavelength of 10 and 6 mm and����	
kHz, starting at % �����&�&�
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Figure 14: Second mode N-factor versus Reynolds number for Mach 6 flared cone using LST.
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beta = 16*0,

qp_approx = true

output_eigenfunction = true

print_rhou_eigf = true

We turn on the curvature terms both along the streamwise and transverse (azimuthal) direction because of
the flared cone geometry. The meanflow extrapolation is turned off (use extrap mprof = false)
to avoid over-estimating the mean quantities at the far field because of the non-vanishing derivatives in
the freestream caused by the Navier-Stokes meanflow solver. Stability calculations start from station 2
to exclude possible noisy solutions right near the inlet of the computational domain in the Navier-Stokes
calculations. We also turn on the printing eigenfunctions option and print the mass flow rate instead of the
pressure eigenfunction. For hypersonic flows, the mass flow rate eigenfunction information is sometimes
more useful than the disturbance pressure. The results are shown in figure 14. The most amplified wave is
around

�&����� � � �
kHz. The corresponding linear PSE calculations may be carried out by simply replacing

local eig solutionwith marching pse solution. The results are shown in figure 15.

The next calculation is for the oblique first mode disturbance at a lower frequency (
���  ��

kHz). Unlike in
the second-mode case, we must first find out the range of unstable integer azimuthal wave numbers (denoted
by

�
). To this end, we optimize the growth rates with respect to

�
by using the following input:

mflow_filename = "../../meanflow/mflow.m6fc_qt"

num_normal_pts 101

strm_curvt = true
transv_curvt = true
use_extrap_mprof = false

marching_method_2d = along_station
init_station = 2
final_station = 127

solution_type = local_eig_solution

freq_unit = in_hertz_freq
beta_unit = wave_angle_beta

freq = 60e3, beta = 65

qp_approx = true

The parameter beta unit is set to wave angle beta and the beta value represents a guess of
 &	 �

.
Figure 16 depicts the N-factor and corresponding integer azimuthal wave number. The kink on the wave
number curve near � � � � in. is due to the curvature discontinuity in the presence of the flare. The results
show that the first mode is most unstable for

�
ranging from 10 to 50. We may use this information to further

perform single mode calculations (i.e., without maximizing the growth rate) by using either LST or PSE.
The N-factor envelope formed by these single-mode calculations may be used for transition correlation.
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Figure 15: Second mode N-factor versus Reynolds number for Mach 6 flared cone using linear PSE.

x

N β

0 5 10 15 20
0

1

2

3

4

5

6

7

10

20

30

40

50

(in)

Figure 16: Optimized first mode N factor versus Reynolds number for Mach 6 flared cone, along with
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6.3. Infinite Swept Wing
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Figure 17: Optimized N-factor versus � "�� at
� � �

for Mach 2 swept wing, along with corresponding
growth rates.

As an example for crossflow instability, we investigate a Mach 2 flow over an
��� �

backward swept wing.
The LASTRAC output header is:

** ** /* Mean Flow Parameters Reading in *\ ** **

Title : Mach 2 80 degree swept wing
GasModel : Perfect gas model
Reference Mach Number : 0.043396
Prandtl Number : 0.72
No. of Stations : 70
X Coordinate Range(m) : 0.001 - 0.038
Re Range : 8.697 - 272.687
B.L. Length Scale(m) : 6.3083707E-05 - 1.4083816E-04
U_inf Velocity (m/s) : 9.169 - 151.118
T_inf Temperature (K) : 111.106 - 99.779

** ** \* .............................. */ ** **

%%%%%%%% disturbance reference frequency (c_r = 0.5) in Hz %%%%%%%%%%%%%
ranging from 109511 to 37646 for l/d = 2

or from 18251.9 to 6274.33 for l/d = 12

The reference Mach number
� � ��� � is based on the velocity component along the normal-chord direction

near the leading edge. We study the stationary crossflow instability first. The first step is to identify the
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unstable range of spanwise wavelength for stationary crossflow disturbances, we use the following input:

//
// Mach 2 80 degree swept wing
//

mflow_filename = "../../meanflow/mflow.f16dave.linux"

marching_method_2d = along_station
init_station = 2
final_station = 139

strm_curvt = true

solution_type = local_eig_solution

freq_unit = in_hertz_freq
beta_unit = l_over_d_beta

freq = 0, beta = 4, wave_angle = 87

qp_approx = true

Here, we optimize the growth rate for a disturbance frequency of 0. For the option of l over d beta,
it is necessary to input a guess of the wave angle in the wave angle array in addition to the guess of
�#"�$ provided by beta. For stationary crossflow, a guess of

��� �
and �#"�$ � � works for almost all cases.

The results are shown in figure 17. The computed growth rate near the leading edge is very large (around� � � ) and eventually drops to
� � � � or smaller. The value of �#"�$ is around

�&	 � � �
near the leading edge

and rapidly decreases to below
 

for � "���� � � �  . This wavelength to boundary layer thickness ratio near
the leading edge is a little too large but still within the acceptable range for crossflow instability. However,
further investigations show that the corresponding wave angle is around

� �&	 �
near the leading edge and

rapidly changes to around
�&� �

. This wave angle information suggests that the large growth rate mode near
the leading edge is an upstream mode and should be filtered out. Therefore, we add the following line to the
input file:

wave ang min = 60, wave ang max = 99

The new results, shown in figure 18, do not have any large growth rate near the leading edge and both � "�$
and the wave angle fall in the normal range. For crossflow instability calculations, we suggest that a correct
wave angle range be specified all the times.

In the previous stationary mode calculations, the most amplified spanwise wavelength ranges from 7 to 14
mm. We then proceed to perform linear PSE calculations based on this information.

mflow_filename = "../../meanflow/mflow.f16dave.linux"

marching_method_2d = along_station
init_station = 5
final_station = 139

strm_curvt = true

solution_type = marching_pse_solution
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Figure 18: Optimized N factor versus � "�� at
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for Mach 2 swept wing, along with � "�$ .
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wave_ang_min = 60, wave_ang_max = 99
np_growth_rate_min = -1.e-2

freq_unit = in_hertz_freq
beta_unit = in_mm_beta

freq = 8*0
beta = 6, 8, 10, 12, 14, 16, 18, 20

qp_approx = false

Here, the starting station is changed to 5 to save some computational time. The use of np growth rate min
= -1.e-2 allows linear PSE marching to lock on a converged mode sooner. The resulting N-factor plot is
shown in figure 19.

Traveling crossflow instability is also important for swept wing boundary layers. We obtain the unstable
spanwise wave number range by using the following input:

mflow_filename = "../../meanflow/mflow.m2sw80.linux"

marching_method_2d = along_station
init_station = 5

final_station = 139
strm_curvt = true

lod_max = 20
wave_ang_min = 40, wave_ang_max = 90,

solution_type = local_eig_solution

freq_unit = in_hertz_freq
beta_unit = l_over_d_beta

freq = 12e3, 15e3, 18e3, 21e3, 24e3, 27e3, 30e3, 33e3, 36e3, 39e3,
42e3, 45e3,

beta = 12*4, wave_angle = 12*80,

qp_approx = true

Here, the frequency band is based on the LASTRAC output. Note that we use lod max = 20 and a
narrow wave angle range (from

� � �
to

��� �
). These two parameters offer a properly narrowed filter window

that allows traveling crossflow modes to be captured.

Figure 20 shows the resulting growth rate distribution using the previous input file. For
�
�
� �

kHz,
spurious modes appear near the leading edge. These modes have normal values of � "�$ around

���
and the

wave angles are around
 �� �

. However, further inspection of the eigenfunctions reveals that they are indeed
spurious modes. LASTRAC did not filter out these modes because of their about normal wave angle and
values of �#"�$ . To remedy this, we may use the the growth rate filter

alpha i max = 0.05
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spurious modes near leading edge.
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to force LASTRAC to discard these modes from the global spectrum. Figure 21 shows the results obtained
when we include the growth rate filter. The corresponding N-factor results are shown in figure 22. The
unstable spanwise wavelength ranges from 6 to 20 mm. We may further pursue linear PSE calculations by
using this information.

The mean flow for the above swept wing case was obtained with a spectral code which employed a relatively
coarse grid. As a result, the mean flow grid does not have enough resolution inside the boundary layer. The
low-order (relative to spectral interpolation) spline interpolated mean flow used by LASTRAC thus makes
the stability calculations more difficult than that from a regular finite-difference based mean flow code.
However, with proper filters, users can still obtain good and accurate solutions.

6.4. Jet and Shear Layers

A shear layer with hyperbolic tangent velocity and temperature profiles as shown in figure 23 is used as a
test case. The basic flow file was written by repeating these profiles for a few downstream locations via
artificially increasing the � coordinate but fixing the rest of the mean flow values. The LASTRAC output
header is:

** ** /* Mean Flow Parameters Reading in *\ ** **

Title : Shear Layer Mean Flow
GasModel : Perfect gas model
Reference Mach Number : 0.300142
Prandtl Number : 0.71
No. of Stations : 10
X Coordinate Range(m) : 0.000 - 0.274
Re Range : 170000.000 - 170000.000
B.L. Length Scale(m) : 2.5400000E-02 - 2.5400000E-02
U_inf Velocity (m/s) : 106.080 - 106.080
T_inf Temperature (K) : 310.887 - 310.887

** ** \* .............................. */ ** **

%%%%%%%% disturbance reference frequency (c_r = 0.5) in Hz %%%%%%%%%%%%%
ranging from 8429.69 to 8429.69 for l/d = 2

or from 1404.95 to 1404.95 for l/d = 12

Based on the suggested frequency, we use this input file:

//
// shear layer test case
//

mflow_filename = "../../meanflow/mflow.slayer"
flow_type = shear_layer

grid_type = critl_cluster
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CHAPTER 6. CASE STUDY I: LINEAR CALCULATIONS 77

tau_s = 20
relax_type = critlayer

cr_min = -2, cr_max = 2

num_normal_pts = 201
num_normal_pts_geig = 61

alpha_i_max = 10000.
max_value_eig_correction = 10000.

ymax = 2
ymax_glob_search = 2

marching_method_2d = along_station
init_station = 5, final_station = 5

solution_type = local_eig_solution

freq_unit = in_hertz_freq,
beta_unit = non_dim_beta

freq = 8000, 7800, 7600, 7400, 7200, 7000, 6800, 6600, 6400, 6200,
6000, 5800, 5600, 5400, 5200, 5000, 4800, 4600, 4400, 4200,
4000, 3800, 3600, 3400, 3200, 3000, 2800, 2600, 2400, 2200,
2000, 1800, 1600, 1400, 1200, 1000, 0800, 0600, 0400, 0200,

beta = 40*0

qp_approx = true

output_eigenfunction = true

Notice the use of the shear layer flow type. A grid that clusters grid points in the middle of the shear
layer is suitable for this case. Thus, we use the critl cluster option and a stretching parameter of
20. We use 201 grid points to resolve this thin shear layer. The phase speed range covers both positive and
negative values. Because the scale used to normalize the length is the shear layer thickness, we must allow
large growth rates and eigenvalues. Therefore, we significantly increase the parameters alpha i max and
max value eig correction. The ymax value of 2 is sufficient to cover the entire domain of interest.
Employing the default value of ymax=200 renders the near center line grid inappropriate to resolve the
shear layer. Adjusting these growth rate and grid related parameters is also important for boundary layer
type calculations in which the length scale used is not the similarity boundary layer scale. Notice that the
use of relax type = critlayer for eigenvalue iteration is necessary because no wall is involved in
this calculation. Multiple unstable modes are found by using the above input. Figure 24 shows the velocity
and temperature eigenfunctions of one such mode.

Our next example is a Mach 2.5 supersonic jet. The mean flow characteristics are summarized as:

** ** /* Mean Flow Parameters Reading in *\ ** **

Title : Mach 2.5 Jet mean flow from Balakumar code
GasModel : Perfect gas model
Reference Mach Number : 1.66667
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Prandtl Number : 0.72
No. of Stations : 257
X Coordinate Range(m) : 0.001 - 0.159
Re Range : 1924.578 - 1924.578
B.L. Length Scale(m) : 6.1600000E-03 - 6.1600000E-03
U_inf Velocity (m/s) : 572.832 - 572.832
T_inf Temperature (K) : 294.000 - 294.000

** ** \* .............................. */ ** **

%%%%%%%% disturbance reference frequency (c_r = 0.5) in Hz %%%%%%%%%%%%%
ranging from 1635.28 to 1626.27 for l/d = 2

or from 272.547 to 271.045 for l/d = 12

The reference Mach number is based on the free-stream temperature and thus is smaller. We use the follow-
ing input to study possible unstable modes at a downstream location of � ��� � � � :
//
// Mach 2.5 jet
//

mflow_filename = "../../meanflow/mflow.m2.5jet"

flow_type = jet_vortex

grid_type = critl_cluster
tau_s = 10.

num_normal_pts = 101

alpha_i_max = 1.

ymax = 10
ymax_glob_search = 5

transv_curvt = true

relax_type = critlayer

marching_method_2d = along_xc
init_xc = 0.02, final_xc = 0.02, step_xc = 0.001

solution_type = local_eig_solution

freq_unit = in_hertz_freq,
beta_unit = nwave_axisym_beta,

freq = 0.2e4, 0.4e4, 0.6e4, 0.8e4, 1.e4, 1.2e4, 1.4e4,
1.6e4, 1.8e4, 2.e4, 2.2e4, 2.4e4, 2.6e4, 2.8e4,
3.0e4, 3.2e4, 3.4e4, 3.6e4, 3.8e4, 4.0e4, 4.2e4,
4.4e4, 4.6e4, 4.8e4, 5.0e4, 5.2e4, 5.4e4, 5.6e4,
5.8e4, 6.0e4, 6.2e4, 6.4e4, 6.6e4, 6.8e4, 7.0e4,
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beta = 35*1,

sqp_approx = true

Notice the use of the jet vortex flow type and the critl cluster grid type. The scaling in the mean
flow is based on the effective jet diameter; therefore, we must allow modes with large growth rate by setting
alpha i max = 1. The use of ymax = 10 is also quite different from the boundary layer cases. In
the cylindrical coordinate, we must also account for the azimuthal curvature (transv curvt = true).
Similar to the shear layer cases, the relax type should be critlayer. In addition, the appropriate
spanwise wave number option is an integer azimuthal wave number; therefore, we use beta unit =
nwave axisym beta. Here, the frequency range is from

�!� �
to

� �
kHz. We make this frequency

range broader than that suggested in the banner output to cope with possible errors in the boundary layer
based frequency estimation invoked in LASTRAC. We repeat the above calculations from

� � �
to

� � �
;

the results are shown in figure 25.
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Figure 26: Growth rates vs. x from linear PSE marching with pns approximation or a small step size.

Based on the linear stability results shown in figure 25, we perform linear PSE calculations for the most
amplified mode (

��� � �
kHz,

� � �
):

init_xc = 0.002, final_xc = 0.156, step_xc = 0.001
solution_type = marching_pse_solution
freq = 19e3, beta = 1,

The code runs, but it stops at � � � � ��� � and an error message indicates that the PSE iteration did not
converge. This error is associated with the elliptic behavior of the linear PSE approximation discussed in
the previous section. To maintain numerical stability, we need to add the following line to the input file:
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pns_approx = true

Alternatively, we can increase the marching step size by step xc = 0.003. Figure 26 compares the
growth rates from these two approaches. Except near the beginning of the domain, the results are almost
identical.

The examples discussed in this section show that LASTRAC may also be used for jet and shear layer flows.
However, because the default parameters are tuned for boundary layer flows, users must pay attention to the
eigenvalue filters when applied to shear layer calculations.



Chapter 7

Case Study II : Nonlinear Calculations

All calculations presented in the previous chapter are linear, i.e., the amplitude of disturbances scales directly
with the initial amplitude. The absolute amplitude of the disturbance does not play a role in the disturbance
evolution. Each instability wave grows or decays independently. In reality, this linear assumption is only
valid when the absolute amplitude of the disturbance is sufficiently small. When a disturbance grows to
large enough amplitude, nonlinear interaction causes energy exchange among all Fourier harmonics. As
a result, the mean flow profile becomes distorted in response to nonlinear effects. Stability characteristics
of this distorted mean flow are quite different from the original laminar state. In this chapter, we discuss
examples in which a finite amplitude is imposed on disturbances.

The amplitude of any Fourier mode used herein is defined as the root mean square (rms) value, i.e.,

� � � ��� �
�
���
!
� ���� � ��� ���

�

where � � ��� " � is the time period associated with the computational domain. The quantity
� ��� is the

absolute value of the corresponding Fourier component of the total disturbance (as defined in equation (10),

� ��� � 	
	
��� 
 � � � � � ��� ��� � � ������� 	

measured at the corresponding peak location in the wall-normal direction. For low ( � � �
) and high

Mach number flows, the amplitude is based on peak streamwise velocity and temperature, respectively. The
amplitude parameter that users provide in the input file is interpreted as the rms amplitude of each Fourier
mode. The amplitude parameter has a complex value to allow phase disparity among different modes.

7.1. Nonlinear Disturbance Evolution

The first case is a Mach 4.5 flat plate boundary layer. We pick a disturbance frequency of
� ��� � ��� � � ��	 .

Using the linear PSE procedure described in the previous chapter, we find an unstable mode at % � ���&�&�
with an eigenvalue of 
 � � � �� �� �  ���� � � �&�&� � � ��� � � � . The nonlinear PSE calculation is performed with the
following input:

82
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//
// input file for nonlinear PSE
//

use_mthread = true
nthread = 8

nonl_pse_calc = true
n_mode_omega = 7, n_mode_beta = 0,
n_init_modes = 1,
nonl_alpha_init = (0.176936,-0.000330943)
nonl_amp_init = (0.06, 0)
nonl_mode_init = (1, 0)
nonl_dealiasing = true
nonl_relax_coef = 0.5

nonl_convg_tolerance = 1.e-4
max_nonl_iteration = 200

mflow_filename = "../../meanflow/mflow.m4.5fp.linux"

marching_method_2d = along_re
init_re = 2000, final_re = 3000, step_re = 20

np_growth_rate_min = -0.01

freq_unit = capf_freq
freq = 0.80e-4,
beta = 0.

Here, we turn on the multi-thread option and set the maximum number of concurrent threads to 8. The op-
timal number for performance depends on the hardware configuration of the machine. To make a nonlinear
PSE calculation, we need to set nonl pse calc = true and then specify number of Fourier modes (in
this case, 7 positive temporal modes and 0 spanwise modes, � � �

and
� � �

). We only initiate one
eigenmode (mode 
 ��� ��� ) with the eigenvalue specified and a disturbance amplitude of

 ��
based on the peak

temperature disturbance (because the free-stream Mach number is
� � 	 ). The de-aliasing option is on and an

under-relaxation factor of
� � 	 help stabilize nonlinear iterations. Other parameters needed are mean flow

file name and the marching step. The use of np growth rate min = -0.01 allows a relatively stable
eigenmode to be included in the initial location. The disturbance frequency specified is the fundamental
frequency of the Fourier series expansion. We use

� � � � � � � � ��	 , and only higher harmonics will be
calculated.

The computed mass flow rate amplitude for each Fourier mode is shown in figure 27. In addition to the
input 
 ��� ��� mode, other higher harmonics and the mean flow distortion 
 � � ��� modes all grow to larger
amplitudes and then decay with the primary mode. The peak mass flow rate amplitude in this case reaches
about

� � �
and temperature about

� �
�
. The growth rate of the primary mode is compared with that from

the corresponding linear PSE calculation in figure 28. The nonlinear case saturates and decays faster than
the linear case.
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7.2. Secondary Instability of 2-D Boundary Layers

In this section, we use LASTRAC to compute the secondary instability of an incompressible flat plate
boundary layer. The primary disturbance has a frequency of

� ��� � � � ��� � ��	 . The subharmonic secondary
instability with a spanwise wave number of � � � � � � at % � � ���

is of interest. We first ran LASTRAC
with the linear PSE option to get a nonparallel eigenvalue �

� 
 � � � � �&	�� ����� � � �&�&� � �&�
���&� � with � � � at
% � � ��� . The oblique subharmonic mode is with a spanwise wave number � of

� � � � and a frequency of� ��� �  &� � � � ��	 . There are two different ways to initialize this mode in LASTRAC. We can use the primary
mode ( 
 ��� ��� ) eigenfunction directly. However, this leads to transient effects for the subharmonic mode.
Alternatively, we can use the associated stable eigenmode at this Reynolds number. However, identifying a
stable discrete eigenmode poses a problem. A good strategy is to begin with an easy to find unstable 2-D
mode ( � ��� ) and gradually increase � to the desired value. The following input file shows how to do it,

np_growth_rate_min = -1.e-1

marching_method_2d = along_re
init_re = 390, final_re = 390, step_re = 1.0

solution_type = local_eig_solution
qp_approx = false
freq_unit = capf_freq
beta_unit = non_dim_beta

freq = 8*0.62e-4,
beta = 0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14

In this input, a global nonparallel eigenvalue search will be performed for the 2-D mode ( � � �
). The

converged mode is then used as an initial guess for the next calculation ( � ��� � � � in this case). In this way,
we avoid the difficulties associated with picking a stable mode in the spectrum. Note that we also lower
the bound of stable growth rate np growth rate min = -1.e-1 to make it more inclusive for the
eigenvalue selection. Using this input, we find �

� 
 � � � 	& ��& �� ��� � � �&�  ��� � �� �� for the oblique subharmonic
mode.

Having both primary and subharmonic eigenmodes, we are ready to simulate transition with a prescribed
initial amplitude. As a first attempt, we may use:

//
// Subharmonic breakdown for an incompressilbe boundary layer
//

num_normal_pts =101

grid_type = wall_cluster

np_growth_rate_min = -1.e-1

use_mthread = true
nthread = 4

nonl_pse_calc = true
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Figure 29: Streamwise velocity disturbance amplitude versus Reynolds number for primary 
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n_mode_omega = 4, n_mode_beta = 4,
n_init_modes = 2,
nonl_alpha_init = (0.132594,-0.000704844), (0.0569691,0.00620216)
nonl_amp_init = (0.001, 0), (5.e-5, 0)
nonl_mode_init = (2, 0), (1, 1)
nonl_alpha_scaling_mode_t = (2, 0)
nonl_dealiasing = true

nonl_inc_mfd_jac = true

nonl_convg_tolerance = 1.e-4
max_nonl_iteration = 100

pns_approx = true

mflow_filename = "../../meanflow/mflow.klexp.linux"

marching_method_2d = along_re
init_re = 390, final_re = 900, step_re = 5.0

freq_unit = capf_freq

freq = 0.62e-4,
beta = 0.14

qp_approx = false

Here, we use � � �
and

� � �
. The fundamental frequency is

� � � �  &� � � � . The primary and
subharmonic modes are 
 ��� ��� and 
 �����
� , respectively. The � � � scaling for the non-initialized Fourier modes
is based on the 
 ��� ��� mode (nonl alpha scaling mode t = (2, 0)). The initial amplitudes are� � �
� and

	 � � � 	 , respectively. To stabilize the nonlinear iterations, we include the mean flow distortion
mode on the left-hand side operator by setting nonl inc mfd jac = true. The computed disturbance
amplitude is plotted in figure 29. The primary disturbance grows initially but never reaches an amplitude
large enough to trigger secondary instability of the subharmonic mode.

We increase the initial amplitude of the primary disturbance to
� � 	�� while keeping the subharmonic mode

the same by using nonl amp init = (0.005, 0), (5.e-5, 0). The results are shown in figure
30. Now, the 
 �����
� mode grows rapidly starting from % � 	&���

. At around % �  &	��
, the subharmonic

mode overtakes the primary mode. These results indicate that the flow undergoes a subharmonic transition
process. To further resolve this flow phenomena, we change the input file to:

num_normal_pts =101
np_growth_rate_min = -1.e-1

use_mthread = true
nthread = 4

nonl_pse_calc = true

n_mode_omega = 6, n_mode_beta = 6,
n_init_modes = 2,
nonl_alpha_init = (0.132594,-0.000704844), (0.0569691,0.00620216)
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nonl_amp_init = (0.005, 0), (5.e-5, 0)
nonl_mode_init = (2, 0), (1, 1)
nonl_alpha_scaling_mode_t = (2, 0)
nonl_dealiasing = true

nonl_inc_mfd_jac = true

nonl_convg_tolerance = 1.e-4
max_nonl_iteration = 100
pns_approx = true

mflow_filename = "../mflow/mflow.klexp.linux"

marching_method_2d = along_re
init_re = 390, final_re = 900, step_re = 2.0

freq_unit = capf_freq

freq = 0.62e-4,
beta = 0.14

qp_approx = false

We increase the number of Fourier modes to � �  
and

� �  
. The streamwise grid resolution is also

increased by using a constant Reynolds number increment of 2 (step re = 2). This new grid gives bet-
ter resolution near the transition region. The resulting amplitude evolution is depicted in figure 31 which
clearly shows the secondary instability process. Compared with the previous run with less resolution (fig.
30), the transition region in figure 31 is better resolved; near the end, the dominating subharmonic mode
saturates and back reaction forces the primary mode to grow again. These important features of the subhar-
monic breakdown process were previously only observed in DNS calculations. Nonlinear iterations failed
to converge at % � � �&�

for this calculation. Decreasing the under-relaxation factor (nonl relax coef)
to about 0.1, we can continue nonlinear iterations beyond % � � �&�

and go deeper into the transition region.
Alternatively, a subgrid scale model that will be implemented in the future release would also help stabilize
nonlinear iterations in the transition region. The corresponding friction coefficient plot is shown in figure 32
where a rapid rise in skin friction is evident. This phenomenon further verifies that the flow has entered the
laminar-turbulent transition stage.

If a converged eigensolution cannot be found for the oblique mode, we can use the primary 
 ��� ��� eigen-
function in place of the 
 �����
� mode by using

nonl alpha init = (0.132594,-0.000704844), (0, 0)

and keeping everything else the same. This alternative initialization procedure worked similar to the original
one except that noticeable transient effect was observed for the 
 �����
� mode.

This case exemplifies how transition may be predicted in a forced environment with a prescribed amplitude
for relevant instability modes. Of course, the initial amplitude still needs to be determined by the receptivity
process, this issue is a future topic for LASTRAC development.
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7.3. Oblique-Mode Breakdown in Supersonic Boundary Layers

For low supersonic boundary layers with a free-stream Mach number less than 4, the most dominant insta-
bility is the oblique first mode. One pair of oblique modes could interact and produce the streamwise vortex
mode. Triad interaction among these three modes gives rise to the growth of other Fourier harmonics and
eventually leads to transition (for details, see reference [6]). Here, we demonstrate this breakdown process
for the Mach 2 flat plate boundary layer investigated previously.
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Figure 33: Evolution of disturbance amplitudes for Mach 2 flat plate that undergoes oblique-mode break-
down for all participating Fourier modes.

Based on the linear PSE results shown in the previous chapter, we pick the most amplified disturbance
with a frequency of 12 kHz and a spanwise wavelength of 8 mm for the oblique-mode breakdown sim-
ulation. By running LASTRAC with the linear PSE option, we found a nonparallel eigenvalue ( � ) of

 � � ��� ���& ������� � 	&���
�&� � ��� 	�� at % � ��	��&�

. We impose an initial amplitude of � �
� for this oblique mode.
The input file is:

use_mthread = true
nthread = 8

nonl_pse_calc = true
n_mode_omega = 4, n_mode_beta = 4,
n_init_modes = 1,
nonl_alpha_init = (0.0149649,8.58088e-05)
nonl_amp_init = (0.001, 0)
nonl_mode_init = (1, 1)
nonl_alpha_scaling_mode_t = (1, 1)
nonl_dealiasing = true
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nonl_relax_coef = 0.5

nonl_convg_tolerance = 1.e-4
max_nonl_iteration = 200

nonl_inc_mfd_jac = true

num_normal_pts = 101

mflow_filename = "../../meanflow/mflow.m2fp.linux"

marching_method_2d = along_re
init_re = 1500, final_re = 5000, step_re = 20,

freq_unit = in_hertz_freq
beta_unit = in_mm_beta

freq = 12e3,
beta = 8

qp_approx = false

Notice that the scaling mode for this case is the excited 
 �����
� mode. Only the 
 �����
� mode needs to be
specified; the 
 �����
�
� mode is also excited internally based on the default symmetry condition. Only four
Fourier modes are kept in both temporal and spanwise directions. The resulting streamwise velocity ampli-
tude spectrum versus Reynolds number is shown in figure 33. The skin friction is plotted in figure 34. The
rapid rise near the end of the run illustrates that the flow is transitional.

7.4. Nonlinear Development of Crossflow Instability

We use the Mach 2,
��� �

swept wing boundary layer studied in the previous chapter to demonstrate non-
linear crossflow instability calculations. For stationary crossflow instability, the most amplified mode has
a spanwise wave length of � � � � �

mm. In this example, we excite two stationary modes with spanwise
wavelengths of 8 and 10 mm.

//
// Mach 2 80 degree swept wing
//

use_mthread = true
nthread = 8
nonl_pse_calc = true

n_mode_omega = 0, n_mode_beta = 20,
n_init_modes = 2,
nonl_alpha_init = (-0.292164,-0.0298771), (-0.373376,-0.028974)
nonl_dadx_init = (0.00233852,-0.000142725), (0.00295343,-0.000225542)

nonl_amp_init = (0.001, 0), (0.001, 0)
nonl_mode_init = (0, 4), (0, 5)
nonl_alpha_scaling_mode_s = (0, 5)
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mode_symm = beta_symm_only
nonl_dealiasing = true
nonl_inc_mfd_jac = true

nonl_convg_tolerance = 1.e-3
max_nonl_iteration = 200

mflow_filename = "../../meanflow/mflow.m2sw80.linux"
grid_type = wall_cluster

marching_method_2d = along_station
init_station = 12

final_station = 139

pns_approx = true
pns_sigma = 0.

strm_curvt = true
freq_unit = in_hertz_freq
beta_unit = in_mm_beta

freq = 0 beta = 40
qp_approx = false

Here, the fundamental wavelength is set to 40 to include both the 8- and 10-mm modes in the same Fourier
series. Initial values of � and � � " ��� are obtained from the corresponding linear PSE runs. We keep
only 20 positive spanwise modes (

� � ���
). Initial amplitudes are � �
� for both excited modes. Notice

the use of beta symm only for nonlinear crossflow instability. We also turn on the PNS approximation
pns approx = true and pns sigma = 0 to suppress any elliptic behavior. These two parameter
settings result in neglecting the streamwise pressure shape-function gradient variation entirely. They are
not always necessary for nonlinear runs; however, these two parameters are used in this case to stabilize
nonlinear iterations for the insufficiently resolved mean flow associated with the spectral grid used by the
boundary layer code. For well-resolved mean flows, setting pns omega = 0 is not necessary. The scaling
mode for this case could be either the 
 � � � � or 
 � ��	�� .
Figure 35 shows the resulting streamwise velocity amplitudes. The 8-mm mode dominates for a short dis-
tance and then decays. Nonlinear interaction of the two excited modes feeds energy to other harmonics such
as 
 � ���
� � 
 � ����� � 
 � � � � , and 
 � ����� ; these harmonics become very energetic near the end of the simulation.

We can further add a traveling crossflow mode by changing a few lines in the input file:

...
n_mode_omega = 4, n_mode_beta = 20,
n_init_modes = 3,
nonl_alpha_init = (-0.292164,-0.0298771), (-0.354517,-0.0271069)
(-0.0991061,-0.0673744)

nonl_dadx_init = (0.00233852,-0.000142725), (0.00232006,-4.67329e-05)
(0.00180321,-0.00110323)

nonl_amp_init = (0.001, 0), (0.001, 0), (1.e-6, 0)
nonl_mode_init = (0, 4), (0, 5), (1, 4)
nonl_alpha_scaling_mode_s = (0, 5)
nonl_alpha_scaling_mode_t = (1, 4)
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Figure 34: Skin friction coefficient versus Reynolds number for Mach 2 flat plate boundary layer that un-
dergoes oblique-mode breakdown.
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...
freq = 25e3 beta = 40

Here, we have � � �
and

� �����
. The fundamental frequency is no longer zero. The input traveling mode

has a frequency of 25 kHz and a wavelength of 10 mm; thus, it is the 
 ��� � � mode. We also need to set the
scaling mode for unsteady Fourier modes to be the 
 ��� � � mode, which is the only unsteady mode excited.
In this simulation, the Fourier modes in the range of

� � � � � ��� � � � �����
will be computed, and the

rest of the modes are assumed to follow the symmetry condition. Nonlinear iterations failed to converge at a
location where the maximum amplitude reached about

 ��
when we ran LASTRAC with this input file. We

restarted LASTRAC by adding the following:

nonl_relax_coef = 0.2
nonl_restart = true
nonl_restart_fn = "Nonl_restart.dat.f0n1_25k"

The under-relaxation factor is reduced to 0.2; and the restart flag is turned on together with a prescribed
binary restart file name. This input file carried the run further into the nonlinear regime. The results are
shown in figure 36 for various Fourier harmonics. The traveling wave ( 
 ��� � � mode) grows along with
the excited stationary modes. Nonlinear interactions cause all three excited modes to evolve differently as
compared to the pure stationary case shown in figure 35.

This example shows that LASTRAC can handle nonlinear interactions of multiple eigenmodes. Coupled
with the receptivity model, we may simulate transition by using a rather efficient nonlinear PSE procedure.
To initiate the spectrum, we can use eigenmodes from a linear PSE calculation as given in the previous
example. Only a few important modes need to be specified, and other participating modes may be initiated
by setting nonl alpha init = 0 and a small amplitude. Alternatively, users may feed in disturbance
mode profiles from external sources, such as experimental data, to initiate the excited modes.
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Chapter 8

Summary

Predicting transition onset remains a daunting task even with state-of-the-art computing facilities. At the
lowest fidelity, transition may be predicted by using a prescribed N-factor and a simple linear stability or
parabolized stability theory. Depending on the accuracy requirement, the N value may come from empirical
correlations with existing wind tunnel or flight experiments, or from a commonly used value such as 10. The
major issue with this approach, in addition to the prediction tool, lies in the N-value itself. According to past
experiences, the transition N-value may vary from 2 to 3 in a noisy facility to 10 or higher in flight. Thus,
for a new configuration, determining the N-value is itself a difficult task. Despite this uncertainty, N-factor
correlation remains the most viable method for transition prediction to date because of its simplicity. The
Langley Stability and Transition Analysis Code (LASTRAC) provides both linear stability theory (LST) and
parabolized stability equations (PSE) based N-factor correlation capabilities.

For a given mean flow, a possible unstable frequency range is suggested by LASTRAC. By using the max-
imizing N-factor option, users may obtain an unstable parameter range of disturbance frequency and span-
wise wavelength with minimum effort and little prior knowledge of the mean flow under consideration.
Further linear calculations using either quasi-parallel LST or nonparallel PSE may be launched to obtain an
envelope of N-factors formed by a broad range of unstable modes. The N-factor envelope can then be used
for transition correlations or predictions.

LASTRAC can also compute disturbance evolution based on an absolute amplitude. Nonlinear PSE calcu-
lations may be performed for a number of unstable modes with a finite amplitude. We demonstrated several
test cases in which the boundary layer was perturbed with a given amplitude, and transition was captured
by using the nonlinear PSE option. With a specified initial amplitude for all participating Fourier modes,
LASTRAC offers a transition prediction tool that may be used to compute transition onset without any
modeling or N-factor assumptions. The initial disturbance amplitude can be obtained by using a linearized
Navier-Stokes (LNS) or direct numerical simulation (DNS) solver, or by incorporating a receptivity model
that will be implemented in LASTRAC in the near future.

LASTRAC is currently used by various industrial organizations and academia for stability calculations and
transition predictions. Parametric studies for several supersonic laminar flow control concepts were also in-
vestigated using LASTRAC. The test cases shown in this manual cover a broad range of flow configurations.
In addition to the traditional N-factor method, LASTRAC offers a comprehensive set of options based on
the state-of-the-art numerical methods that may be used for stability calculations and transition predictions
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in an integrated fashion.
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